缺血性脑卒中康复中低氧调节技术的治疗潜力: 从分子与生理机制到临床实践(文献综述)
- 作者: Nyamukondiwa M.1, Koneva E.S.1,2, Glazachev O.S.1
-
隶属关系:
- Sechenov First Moscow State Medical University
- MEDSI
- 期: 卷 24, 编号 5 (2025)
- 页面: 321-331
- 栏目: Review
- URL: https://journals.rcsi.science/1681-3456/article/view/354740
- DOI: https://doi.org/10.17816/rjpbr679816
- EDN: https://elibrary.ru/elyqay
- ID: 354740
如何引用文章
详细
急性脑血管意外(acute cerebrovascular accident, ACVA)仍是导致致残和死亡的主要原因之一,即使在恢复的晚期阶段,认知和功能障碍的发生和进展风险依然存在。问题的严重性促使人们探索卒中后康复及改善患者生活质量的创新方法。间歇性缺氧治疗,尤其是以间歇性低氧-高氧暴露(intermittent hypoxic–hyperoxic training, IHHT)疗程形式,作为一种前景广阔的非药物治疗方法,能够促进神经可塑性、突触生成和脑血流动力学。本文旨在分析IHHT在ACVA后康复中的治疗潜力,特别是其在分子适应机制、血管生成和功能恢复方面的作用。本研究方法包括在PubMed、Scopus、eLIBRARY.RU等数据库中进行系统检索,重点关注与低氧预适应、神经保护和临床结局相关的研究。研究表明,IHHT可激活HIF-1α依赖性信号通路,通过VEGF促进血管生成,并通过BDNF诱导神经发生,实验与临床数据均对此提供了支持。中等强度的间歇性低氧(9–16% O2)可优化氧化还原平衡,抑制促炎细胞因子(IL-6、TNF-α)的表达,并通过Nrf2途径增强抗氧化防御,其作用与缺血性损伤体积的减少相关。在临床方面,IHHT可改善认知功能(记忆、注意力)和运动能力,尤其是在结合有氧训练时,可显著提高运动耐力(6分钟步行测试距离提高15–20%)和生活质量。其心脏保护效应表现为血压的正常化及氧化应激标志物(如丙二醛)水平的下降,对多病共存的患者尤为重要。将IHHT纳入多模式康复方案有助于增强方法间的协同作用,促进神经血管重塑。尽管该技术前景广阔,但仍需根据年龄及合并症优化个体化方案,并开展随机对照试验以评估其长期安全性。本综述面向神经科医师、分子生物学家及康复医学专家,强调在进一步验证其疗效后,IHHT具有向临床实践转化的潜力。
作者简介
Malachi Nyamukondiwa
Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: nyamukondiva_m@student.sechenov.ru
ORCID iD: 0000-0002-9834-2505
俄罗斯联邦, Moscow
Elizaveta S. Koneva
Sechenov First Moscow State Medical University; MEDSI
Email: elizaveta.coneva@yandex.ru
ORCID iD: 0000-0002-9859-194X
SPIN 代码: 8200-2155
MD, Dr. Sci. (Medicine), Associate Professor, Professor
俄罗斯联邦, Moscow; MoscowOleg S. Glazachev
Sechenov First Moscow State Medical University
Email: glazachev@mail.ru
ORCID iD: 0000-0001-9960-6608
SPIN 代码: 6168-2110
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow参考
- Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci. 2020;21(20):7609. doi: 10.3390/ijms21207609
- Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurological research and practice. 2020; 2(1):17. doi: 10.1186/s42466-020-00060-6
- Kadykov AS, Shakhparonova NV. Rehabilitation after stroke. Russian Medical Journal. 2003;11(25):1390–1394. (In Russ.)
- Levin OS, Bogolepova AN. Poststroke motor and cognitive impairments: clinical features and current approaches to rehabilitation. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(11):99–107. doi: 10.17116/jnevro202012011199 EDN: VZORCZ
- Damulin IV, Ekusheva EV. Poststroke neuroplasticity processes. Neurology, Neuropsychiatry, Psychosomatics. 2014;6(3):69–74. doi: 10.14412/2074-2711-2014-3-69-74 EDN: SXMTMP
- Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862(5):915–925. doi: 10.1016/j.bbadis.2016.01.015
- Jokinen H, Melkas S, Ylikoski R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22(9):1288–1294. doi: 10.1111/ene.12743
- Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018;38(2):208–211. doi: 10.1055/s-0038-1649503
- Baillieul S, Chacaroun S, Doutreleau S, et al. Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries? Exp Biol Med (Maywood). 2017;242(11):1198–1206. doi: 10.1177/1535370217712691
- Bondarenko NN, Khomutov EV, Ryapolova TL, et al. Molecular and cellular mechanisms of hypoxic response. Ulyanovsk Medico-Biological Journal. 2023;(2):6–29. doi: 10.34014/2227-1848-2023-2-6-29. EDN: KDWYWV
- Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, et al. New approaches to recovery after stroke. Neurol Sci. 2024;45(1):55–63. doi: 10.1007/s10072-023-07012-3
- Burtscher J, Citherlet T, Camacho-Cardenosa A, et al. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol. 2024;602(21):5757–5783. doi: 10.1113/JP285230
- Burtscher J, Glazachev OS, Kopp M, Burtscher M. Effects of intermittent hypoxia exposures and interval hypoxic training on exercise tolerance (narrative review). Sports Medicine: Research and Practice. 2024;14(2):16–23. doi: 10.47529/2223-2524.2024.2.5 EDN: NXMOXI
- Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci. 2022;16:941740. doi: 10.3389/fnins.2022.941740 EDN: EMYARG
- Glazachev OS, Lyamina NP, Spirina GK. Intermittent hypoxic conditioning: experience and potential in cardiac rehabilitation programs. Russian Journal of Cardiology. 2021;26(5):4426. doi: 10.15829/1560-4071-2021-4426 EDN: NDKICG
- Semenov DG, Belyakov AV. Hypoxic Conditioning as a Stimulus for the Formation of Hypoxic Tolerance of the Brain. Progress in physiological science. 2023;54(2):3–19. doi: 10.31857/S0301179823020066. EDN: PLLHTS
- Gluschenkova NV, Sarkisian OG, Goncharova ZA. Malignant ischemic stroke: clinical and biochemical features of diagnosis. South Russian Journal of Therapeutic Practice. 2023;4(2):35–45. doi: 10.21886/2712-8156-2023-4-2-35-45 EDN: UBXJHP
- Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood). 2008;233(6):627–650. doi: 10.3181/0710-MR-267 EDN: LKZULR
- Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of intermittent hypoxia–hyperoxia on performance-and health-related outcomes in humans: A systematic review. Sports Medicine — Open. 2022;8(1):70. doi: 10.1186/s40798-022-00450-x
- Glazachev O, Kopylov P, Susta D, Dudnik E, Zagaynaya E. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study. Clin Cardiol. 2017;40(6):370–376. doi: 10.1002/clc.22670 EDN: XNDVJA
- Kono Y, Fukuda S, Hanatani A, et al. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des Devel Ther. 2014;8:1175–1181. doi: 10.2147/DDDT.S68715
- Bayer U, Glazachev OS, Likar R, et al. Adaptation to intermittent hypoxia–hyperoxia improves cognitive performance and exercise tolerance in the elderly. Adv Gerontol. 2017;7(3):214–20. doi: 10.1134/S2079057017030031 EDN: PRTFOT
- Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair. 2012;26(2):163–172. doi: 10.1177/1545968311412055
- Mikhalishchina AS, Zagayniy ED, Vasina YV, Glazachev OS. Effect of single interval hypoxic stimulation on cognitive functions of healthy volunteers. Psychophysiology News. 2023;(4):86–95. doi: 10.34985/d2699-5404-1619-b EDN: SXUBQJ
- Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci. 2024;16:1402774. doi: 10.3389/fnagi.2024.1402774
- Janssen Daalen JM, Meinders MJ, Giardina F, et al. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol. 2022;22(1):262. doi: 10.1186/s12883-022-02770-7
- Cai M, Chen X, Shan J, et al. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol. 2021;12:643619. doi: 10.3389/fphar.2021.643619
- Kostenko AA, Koneva ES, Malyutin DS, et al. Hypoxic training in rehabilitation of patients at the early stages of recovery after SARS-CoV-2 pneumonia. Problems of Balneology, Physiotherapy and Exercise Therapy. 2022;99(4–2):11–16. doi: 10.17116/kurort20229904211. EDN: JLLLKB
- Bestavashvili AA, Glazachev OS, Bestavashvili AA, et al. The effects of intermittent hypoxic-hyperoxic exposures on lipid profile and inflammation in patients with metabolic syndrome. Front Cardiovasc Med. 2021;8:700826. doi: 10.3389/fcvm.2021.700826 EDN: CPYBXP
- Serebrovska TV, Grib ON, Portnichenko VI, et al. Intermittent Hypoxia/Hyperoxia Versus Intermittent Hypoxia/Normoxia: Comparative Study in Prediabetes. High Alt Med Biol. 2019;20(4):383–391. doi: 10.1089/ham.2019.0053 EDN: ZBEJZV
- Susta D, Dudnik E, Glazachev OS. A programme based on repeated hypoxia–hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: a pilot study. Clin Physiol Funct Imaging. 2017;37:276–81. doi: 10.1111/cpf.12296 EDN: YUUOAB
- Prikhodko VA, Selizarova NO, Okovityĭ SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Russian Journal of Archive of Pathology. 2021;83(2):52–61. doi: 10.17116/patol20218302152 EDN: REJNHM
- Мartynov MU, Zhuravleva MV, Vasyukova NS, Kuznetsova EV, Kameneva TR. Oxidative stress in the pathogenesis of stroke and its correction. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(1):16–27. doi: 10.17116/jnevro202312301116 EDN: VPHPBW
- Chen L, Gao Y, Li Y, et al. Severe Intermittent Hypoxia Modulates the Macrophage Phenotype and Impairs Wound Healing Through Downregulation of HIF-2α. Nat Sci Sleep. 2022;14:1511–1520. doi: 10.2147/NSS.S382275
- Mallet RT, Burtscher J, Gatterer H, et al. Hyperoxia-enhanced intermittent hypoxia conditioning: mechanisms and potential benefits. Med Gas Res. 2024;14(3):127–129. doi: 10.4103/mgr.MEDGASRES-D-23-00046
- Burtscher J, Duderstadt Y, Gatterer H, et al. Hypoxia Sensing and Responses in Parkinson's Disease. Int J Mol Sci. 2024;25(3):1759. doi: 10.3390/ijms25031759
- Lei L, Feng J, Wu G, et al. HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J Mol Sci. 2022;23(24):16140. doi: 10.3390/ijms232416140
- Damgaard V, Mariegaard J, Lindhardsen JM, Ehrenreich H, Miskowiak KW. Neuroprotective Effects of Moderate Hypoxia: A Systematic Review. Brain Sci. 2023;13(12):1648. doi: 10.3390/brainsci13121648
- Elendu C, Amaechi DC, Elendu TC, et al. Stroke and cognitive impairment: understanding the connection and managing symptoms. Ann Med Surg (Lond). 2023;85(12):6057–6066. doi: 10.1097/MS9.0000000000001441
- Chen L, Ren SY, Li RX, et al. Chronic Exposure to Hypoxia Inhibits Myelinogenesis and Causes Motor Coordination Deficits in Adult Mice. Neurosci Bull. 2021;37(10):1397–1411. doi: 10.1007/s12264-021-00745-1
- Tuter DS, Kopylov PY, Syrkin AL, et al. Intermittent systemic hypoxic-hyperoxic training for myocardial protection in patients undergoing coronary artery bypass surgery: first results from a single-centre, randomised controlled trial. Open Heart. 2018;5(2):e000891. doi: 10.1136/openhrt-2018-000891
- Bayer U, Likar R, Pinter G, et al. Effects of intermittent hypoxia-hyperoxia on mobility and perceived health in geriatric patients performing a multimodal training intervention: a randomized controlled trial. BMC Geriatr. 2019;19(1):167. doi: 10.1186/s12877-019-1184-1
- Duderstadt Y, Schreiber S, Burtscher J, et al. Controlled Hypoxia Acutely Prevents Physical Inactivity-Induced Peripheral BDNF Decline. Int J Mol Sci. 2024;25(14):7536. doi: 10.3390/ijms25147536
- Li G, Guan Y, Gu Y, et al. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia. CNS Neuroscience & Therapeutics. 2023;29(1):202–215. doi: 10.1111/cns.13996
- Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neuroscience & Therapeutics. 2021;27(12):1446–1457. doi: 10.1111/cns.13754
- Wakhloo D, Scharkowski F, Curto Y, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11(1):1313. doi: 10.1038/s41467-020-15041-1
- Khuu MA, Pagan CM, Nallamothu T, et al. Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J Neurosci. 2019;39(7):1320-1331. doi: 10.1523/JNEUROSCI.1359-18.2018
- Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci. 2022;16:1067411. doi: 10.3389/fnins.2022.1067411
- Behrendt T, Bielitzki R, Behrens M, Glazachev OS, Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients — A Randomized Controlled Trial. Front Physiol. 2022;13:899096. doi: 10.3389/fphys.2022.899096
- Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic Biol Med. 2019;142:123–131. doi: 10.1016/j.freeradbiomed.2019.02.025
- Doehner W, Fischer A, Alimi B, et al. Intermittent Hypoxic-Hyperoxic Training During Inpatient Rehabilitation Improves Exercise Capacity and Functional Outcome in Patients With Long Covid: Results of a Controlled Clinical Pilot Trial. J Cachexia Sarcopenia Muscle. 2024;15(6):2781–2791. doi: 10.1002/jcsm.13628
- Glazachev OS, Geppe NA, Timofeev YuS, et al. Indicators of individual hypoxia resistance — a way to optimize hypoxic training for children. Russian Bulletin of Perinatology and Pediatrics. 2020;65(4):78–84. doi: 10.21508/1027-4065-2020-65-4-78-84 EDN: AKHVQE
- Ignatenko GA, Bagriy AE, Ignatenko TS, et al. Possibilities and Prospects of Hypoxytherapy Application in Cardiology. The Russian Archives of Internal Medicine. 2023;13(4):245–252. doi: 10.20514/2226-6704-2023-13-4-245-252. EDN: AHXHPL
补充文件
