THE APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS FOR EXTRACTION OF MAGNETIC ANOMALY FIELD LINEAMENTS
- 作者: Shklyaruk A.D.1,2, Kuznetsov K.M.1
-
隶属关系:
- Lomonosov Moscow State University
- Institute of Applied Geophysics named after Academician E.K. Fedorov
- 期: 卷 25, 编号 4 (2025): VOL 25, NO4 (2025)
- 页面: ES4007
- 栏目: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352587
- DOI: https://doi.org/10.2205/2025ES001003
- EDN: https://elibrary.ru/ozakic
- ID: 352587
如何引用文章
全文:
详细
The article focuses on the application of convolutional neural networks (CNNs) for automated extraction of magnetic anomaly field lineaments. In the course of the work, an original CNN U-Net based architecture with pre-trained VGG-16 weights was developed, and its training was conducted on a sample of 500 model examples. The approach presented in this work can be an optimal tool for structural interpretation of magnetic anomaly fields. As a result of testing the proposed CNNs for magnetic field of the Barents Sea local area, the axes of the linear anomalies were identified, largely coinciding with the position of the axes obtained by manual expert interpretation. These fact demonstrates the high efficiency of applying modern artificial neural network technologies.
作者简介
A. Shklyaruk
Lomonosov Moscow State University; Institute of Applied Geophysics named after Academician E.K. Fedorov
Email: alexsh9898@yandex.ru
ORCID iD: 0009-0006-4450-5301
SPIN 代码: 7316-2638
K. Kuznetsov
Lomonosov Moscow State University
Email: kirillkuz90@yandex.ru
ORCID iD: 0000-0001-5418-8641
SPIN 代码: 3272-7257
Scopus 作者 ID: 7003635325
Researcher ID: GQI-2201-2022
candidate of technical sciences 2018
参考
Булычев А. А., Лыгин И. В., Соколова Т. Б. и др. Прямая задача гравиразведки и магниторазведки (конспект лекций). — Москва : Университетская книга, 2019. — 176 с. Лыгин И. В., Арутюнян Д. А., Соколова Т. Б. и др. Картирование магматических комплексов по данным гидромагнитных съемок Баренцевоморского региона // Физика Земли. — 2023. — № 4. — С. 96—114. — https: //doi.org/10.31857/s0002333723040075. Хайкин С. Нейронные сети: полный курс, 2-е издание. — Издательский дом «Вильямс», 2016. — 1104 с. Черников К. С., Горбачев С. В., Голованов Д. Ю. и др. Геологическая и экономическая эффективность применения гравиразведки и магниторазведки на разных стадиях геолого-разведочных работ // Геология нефти и газа. — 2020. — № 2. — С. 107—120. — https://doi.org/10.31087/0016-7894-2020-2-107-120. Шклярук А. Д. и Кузнецов К. М. Программа для выделения осей линейных аномалий магнитных и гравитационных полей на основе сверточных нейронных сетей RU 2024685140. — Федеральная служба по интеллектуальной собственности РФ, 2024. Deng J., Dong W., Socher R., et al. ImageNet: A large-scale hierarchical image database // 2009 IEEE Conference on Computer Vision and Pattern Recognition. — IEEE, 2009. — https://doi.org/10.1109/cvpr.2009.5206848. He K., Zhang X., Ren S., et al. Identity Mappings in Deep Residual Networks. — arXiv, 2016. — https://doi.org/10.48550/ARXIV.1603.05027. Plouff D. Gravity and Magnetic fields of polygonal prisms and application to magnetic terrain corrections // Geophysics. — 1976. — Vol. 41, no. 4. — P. 727–741. — https://doi.org/10.1190/1.1440645. Ronneberger O., Fischer P. and Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. — Springer International Publishing, 2015. — P. 234–241. — https://doi.org/10.1007/978-3-319-24574-4_28. Shapiro L. G. and Stockman G. C. Computer Vision. — Prentice-Hall, 2000. — 375 p. Simonyan K. and Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. — arXiv, 2014. — https://doi.org/10.48550/ARXIV.1409.1556. Stankovic L. and Mandic D. Convolutional Neural Networks Demystified: A Matched Filtering Perspective Based Tutorial. — arXiv, 2021. — https://doi.org/10.48550/ARXIV.2108.11663. Szegedy C., Vanhoucke V., Ioffe S., et al. Rethinking the Inception Architecture for Computer Vision. — arXiv, 2015. — https://doi.org/10.48550/ARXIV.1512.00567. Tan M. and Le Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. — arXiv, 2019. — https://doi.org/10.48550/ARXIV.1905.11946. Venkatesan R. and Li B. Convolutional Neural Networks in Visual Computing: A Concise Guide. — CRC Press, 2017. — 186 p. — https://doi.org/10.4324/9781315154282.
补充文件



