WHAT SHOULD WE KNOW TO PREDICT GEOMAGNETICALLY INDUCED CURRENTS IN POWER TRANSMISSION LINES?
- 作者: Pilipenko V.1,2,3, Kozyreva O.2, Belahovskiy V.4, Sakharov Y.4,5,6, Selivanov V.7
-
隶属关系:
- Space Research Institute
- Schmidt Institute of Physics of the Earth, RAS
- Geophysical Center RAS
- Polar Geophysical Institute
- Nothern Energetics Research Centre KSC RAS
- Geophysical Center of the Russian Academy of Sciences
- Northern Energetics Research Centre KSC RAS
- 期: 卷 24, 编号 6 (2024)
- 页面: ES6006
- 栏目: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352523
- DOI: https://doi.org/10.2205/2024ES000954
- EDN: https://elibrary.ru/vetpkc
- ID: 352523
如何引用文章
全文:
详细
作者简介
V. Pilipenko
Space Research Institute; Schmidt Institute of Physics of the Earth, RAS; Geophysical Center RAS
Email: space.soliton@gmail.com
ORCID iD: 0000-0003-3056-7465
Researcher ID: 2365530
doctor of physical and mathematical sciences
O. Kozyreva
Schmidt Institute of Physics of the Earth, RAS
Email: kozyreva@ifz.ru
ORCID iD: 0000-0003-0825-151X
doctor of physical and mathematical sciences
V. Belahovskiy
Polar Geophysical Institute
Email: belakhov@mail.ru
Laboratory of Arctic atmosphere, candidate of physical and mathematical sciences
Ya. Sakharov
Polar Geophysical Institute; Nothern Energetics Research Centre KSC RAS; Geophysical Center of the Russian Academy of Sciences
Email: sakharov@pgia.ru
Laboratory of High-Latitude Geophysical Monitoring, candidate of physical and mathematical sciences 1989
V. Selivanov
Northern Energetics Research Centre KSC RAS
Email: v.selivanov@ksc.ru
ORCID iD: 0000-0001-5681-065X
SPIN 代码: 29124
Scopus 作者 ID: 57190851635
Researcher ID: G-2866-2017
candidate of technical sciences 2004
参考
Amm, O., and A. Viljanen (2014), Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth, Planets and Space, 51(6), 431–440, https://doi.org/10.1186/BF03352247. Apatenkov, S. V., V. A. Pilipenko, E. I. Gordeev, et al. (2020), Auroral Omega Bands are a Significant Cause of Large Geomagnetically Induced Currents, Geophysical Research Letters, 47(6), https://doi.org/10.1029/2019GL086677. Belakhovsky, V. B., V. Pilipenko, M. Engebretson, et al. (2019), Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines, Journal of Space Weather and Space Climate, 9, https://doi.org/10.1051/swsc/2019015. Belakhovsky, V. B., V. A. Pilipenko, Y. A. Sakharov, and V. N. Selivanov (2023), The Growth of Geomagnetically Induced Currents during CME and CIR Geomagnetic Storms in 2021, Bulletin of the Russian Academy of Sciences: Physics, 87(2), 236–242, https://doi.org/10.3103/S1062873822700988. Borovsky, J. E., and M. H. Denton (2006), Differences between CME-driven storms and CIR-driven storms, Journal of Geophysical Research: Space Physics, 111(A7), https://doi.org/10.1029/2005JA011447. Chinkin, V. E., A. A. Soloviev, and V. A. Pilipenko (2020), Identification of Vortex Currents in the Ionosphere and Estimation of Their Parameters Based on Ground Magnetic Data, Geomagnetism and Aeronomy, 60(5), 559–569, https://doi.org/10.1134/S0016793220050035. Chinkin, V. E., A. A. Soloviev, V. A. Pilipenko, et al. (2021), Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data, Journal of Atmospheric and Solar-Terrestrial Physics, 212, 105,514, https://doi.org/10.1016/j.jastp.2020.105514 Dimmock, A. P., D. T. Welling, L. Rosenqvist, et al. (2021), Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework: Studying the Impacts of Spatial Resolution, Space Weather, 19(5), https://doi.org/10.1029/2020SW002683. Engebretson, M. J., K. R. Kirkevold, E. S. Steinmetz, et al. (2020), Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs, Journal of Geophysical Research: Space Physics, 125(8), https://doi.org/10.1029/2020JA028128. Gombosi, T. I., Y. Chen, A. Glocer, et al. (2021), What sustained multi-disciplinary research can achieve: The space weather modeling framework, Journal of Space Weather and Space Climate, 11, 1–55, https://doi.org/10.1051/swsc/2021020. Heyns, M. J., S. I. Lotz, and C. T. Gaunt (2021), Geomagnetic Pulsations Driving Geomagnetically Induced Currents, Space Weather, 19(2), https://doi.org/10.1029/2020SW002557. Kappenman, J. G. (2005), An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms, Space Weather, 3(8), https://doi.org/10.1029/2004SW000128. Kozyreva, O., V. Pilipenko, R. Krasnoperov, et al. (2019), Fine structure of substorm and geomagnetically induced currents, Annals of Geophysics, 62, https://doi.org/10.4401/ag-8198 Kwagala, N. K., M. Hesse, T. Moretto, et al. (2020), Validating the Space Weather Modeling Framework (SWMF) for applications in northern Europe: Ground magnetic perturbation validation, Journal of Space Weather and Space Climate, 10, 33, https://doi.org/10.1051/swsc/2020034. Morley, S. K. (2020), Challenges and Opportunities in Magnetospheric Space Weather Prediction, Space Weather, 18(3), https://doi.org/10.1029/2018SW002108. Ngwira, C. M., D. Sibeck, M. V. D. Silveira, et al. (2018), A Study of Intense Local dB/dt Variations During Two Geomagnetic Storms, Space Weather, 16(6), 676–693, https://doi.org/10.1029/2018SW001911. Pilipenko, V. A. (2021), Space weather impact on ground-based technological systems, Solar-Terrestrial Physics, 7(3), 68–104, https://doi.org/10.12737/stp-73202106. Pilipenko, V. A., O. Kozyreva, M. Hartinger, et al. (2023), Is the Global MHD Modeling of the Magnetosphere Adequate for GIC Prediction: the May 27-28, 2017 Storm, Cosmic Research, 61(2), 120–132, https://doi.org/10.1134/S0010952522600044. Pirjola, R., K. Kauristie, H. Lappalainen, et al. (2005), Space weather risk, Space Weather, 3(2), https://doi.org/10.1029/2004SW000112. Pulkkinen, A., M. Hesse, M. Kuznetsova, and L. Rastätter (2007), First-principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth, Annales Geophysicae, 25(4), 881–893, https://doi.org/10.5194/angeo-25-881-2007. Pulkkinen, A., M. Hesse, S. Habib, et al. (2009), Solar shield: forecasting and mitigating space weather effects on highvoltage power transmission systems, Natural Hazards, 53(2), 333–345, https://doi.org/10.1007/s11069-009-9432-x. Pulkkinen, A., L. Rastätter, M. Kuznetsova, et al. (2013), Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations, Space Weather, 11(6), 369–385, https://doi.org/10.1002/swe.20056. Rastätter, L., G. Tóth, M. M. Kuznetsova, and A. A. Pulkkinen (2014), CalcDeltaB: An efficient postprocessing tool to calculate ground-level magnetic perturbations from global magnetosphere simulations, Space Weather, 12(9), 553–565, https://doi.org/10.1002/2014SW001083. Selivanov, V., T. Aksenovich, V. Bilin, et al. (2023), Database of geomagnetically induced currents in the main transmission line «Northern Transit», Solar-Terrestrial Physics, 9(3), 93–101, https://doi.org/10.12737/stp-93202311. Tóth, G., I. V. Sokolov, T. I. Gombosi, et al. (2005), Space Weather Modeling Framework: A new tool for the space science community, Journal of Geophysical Research: Space Physics, 110(A12), https://doi.org/10.1029/2005JA011126. Viljanen, A., and R. Pirjola (1994), Geomagnetically induced currents in the Finnish high-voltage power system: A geophysical review, Surveys in Geophysics, 15(4), 383–408, https://doi.org/10.1007/BF00665999. Yagova, N. V., V. A. Pilipenko, Y. A. Sakharov, and V. N. Selivanov (2021), Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents, Earth, Planets and Space, 73(1), https://doi.org/10.1186/s40623-021-01407-2 Yu, Y., and A. J. Ridley (2008), Validation of the space weather modeling framework using ground-based magnetometers, Space Weather, 6(5), https://doi.org/10.1029/2007SW000345. Zhang, J. J., C. Wang, and B. B. Tang (2012), Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one-dimensional method, Space Weather, 10(5), https://doi.org/10.1029/2012SW000772.
补充文件



