KINEMATIC CHARACTERISTICS OF ICEBERG D28 DRIFT USING SATELLITE DATA SENTINEL-1A/B SAR
- Авторы: Pogrebnoi A.1, Belokopytov V.1
-
Учреждения:
- Выпуск: Том 24, № 6 (2024)
- Страницы: ES6005
- Раздел: Статьи
- URL: https://journals.rcsi.science/1681-1208/article/view/352522
- DOI: https://doi.org/10.2205/2024ES000940
- EDN: https://elibrary.ru/jdlxmm
- ID: 352522
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
A. Pogrebnoi
ORCID iD: 0000-0001-9390-7231
V. Belokopytov
Email: belokopytov.vn@mhi-ras.ru
ORCID iD: 0000-0003-4699-9588
Список литературы
Azaneu, M., K. J. Heywood, B. Y. Queste, and A. F. Thompson (2017), Variability of the Antarctic Slope Current System in the Northwestern Weddell Sea, Journal of Physical Oceanography, 47(12), 2977–2997, https://doi.org/10.1175/JPO-D17-0030.1. Barbat, M. M., T. Rackow, C. Wesche, et al. (2021), Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study, ISPRS Journal of Photogrammetry and Remote Sensing, 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006. EDN: BGVJVQ Barnes, D. K. A., and T. Souster (2011), Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring, Nature Climate Change, 1(7), 365–368, https://doi.org/10.1038/nclimate1232. EDN: JRZMRB Budge, J. S., and D. G. Long (2018), A Comprehensive Database for Antarctic Iceberg Tracking Using Scatterometer Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 434–442, https://doi.org/10.1109/JSTARS.2017.2784186. Canny, J. (1986), A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698, https://doi.org/10.1109/TPAMI.1986.4767851. Emery, W. J., C. W. Fowler, and J. A. Maslanik (1997), Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994, Geophysical Research Letters, 24(8), 897–900, https://doi.org/10.1029/97GL00755. Francis, D., K. S. Mattingly, S. Lhermitte, M. Temimi, and P. Heil (2021), Atmospheric extremes triggered the biggest calving event in more than 50 years at the Amery Ice shelf in September 2019, The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-2020-219. doi: 10.5194/tc-15-2147-2021; EDN: CYDFLX Fricker, H. A., N. W. Young, I. Allison, and R. Coleman (2002), Iceberg calving from the Amery Ice Shelf, East Antarctica, Annals of Glaciology, 34, 241–246, https://doi.org/10.3189/172756402781817581. EDN: MBHCWP Gandhi, P. P., and S. A. Kassam (1988), Analysis of CFAR processors in nonhomogeneous background, IEEE Transactions on Aerospace and Electronic Systems, 24(4), 427–445, https://doi.org/10.1109/7.7185. Gill, A. E. (1973), Circulation and bottom water production in the Weddell Sea, Deep Sea Research and Oceanographic Abstracts, 20(2), 111–140, https://doi.org/10.1016/0011-7471(73)90048-X. Greenbaum, J. S., D. D. Blankenship, D. A. Young, et al. (2015), Ocean access to a cavity beneath Totten Glacier in East Antarctica, Nature Geoscience, 8(4), 294–298, https://doi.org/10.1038/ngeo2388. EDN: URIVWL Heywood, K. J., A. C. Naveira Garabato, D. P. Stevens, and R. D. Muench (2004), On the fate of the Antarctic Slope Front and the origin of the Weddell Front, Journal of Geophysical Research: Oceans, 109(C6), https://doi.org/10.1029/2003JC002053. Hogg, A. E., and G. H. Gudmundsson (2017), Impacts of the Larsen-C Ice Shelf calving event, Nature Climate Change, 7(8), 540–542, https://doi.org/10.1038/nclimate3359. Jacobs, S. S. (1991), On the nature and significance of the Antarctic Slope Front, Marine Chemistry, 35(1–4), 9–24, https://doi.org/10.1016/S0304-4203(09)90005-6. King, M. A., R. Coleman, A.-J. Freemantle, et al. (2009), A 4-decade record of elevation change of the Amery Ice Shelf, East Antarctica, Journal of Geophysical Research: Earth Surface, 114(F1), https://doi.org/10.1029/2008JF001094. EDN: NFATDY Li, T., Y. Liu, and X. Cheng (2020), Recent and imminent calving events do little to impair Amery ice shelf’s stability, Acta Oceanologica Sinica, 39(5), 168–170, https://doi.org/10.1007/s13131-020-1600-6. EDN: TGYIFJ Liu, X., X. Cheng, Q. Liang, et al. (2021), Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography, Remote Sensing, 14(1), 154, https://doi.org/10.3390/rs14010154. EDN: MBPVOQ Liu, Y., J. C. Moore, X. Cheng, et al. (2015), Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, Proceedings of the National Academy of Sciences, 112(11), 3263–3268, https://doi.org/10.1073/pnas.1415137112. EDN: UPWTBH Matas, J., O. Chum, M. Urban, and T. Pajdla (2004), Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, 22(10), 761–767, https://doi.org/10.1016/j.imavis.2004.02.006. Mazur, A. K., A. K. Wåhlin, and A. Krężel (2017), An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea, Remote Sensing of Environment, 189, 67–83, https://doi.org/10.1016/j.rse.2016.11.013. EDN: XZICXD McIlhagga, W. (2010), The Canny Edge Detector Revisited, International Journal of Computer Vision, 91(3), 251–261, https://doi.org/10.1007/s11263-010-0392-0. EDN: KUEKYA Mitkari, K., J. Pallipad, D. Putrevu, and A. Misra (2021), Detecting Calving Events of Icebergs D-28 and B-49 using High Resolution Sentinel-1A SAR Data, EGU General Assembly 2021, online, 19-30 Apr 2021, EGU21-16264, https://doi.org/10.5194/egusphere-egu21-16264. Morozov, E. G., V. A. Krechik, D. I. Frey, and V. V. Zamshin (2021), Currents in the Western Part of the Weddell Sea and Drift of Large Iceberg A68A, Oceanology, 61(5), 589–601, https://doi.org/10.1134/S000143702105009X. EDN: ETGCPZ Normandeau, A., K. MacKillop, M. Macquarrie, et al. (2021), Submarine landslides triggered by iceberg collision with the seafloor, Nature Geoscience, 14(8), 599–605, https://doi.org/10.1038/s41561-021-00767-4. EDN: ZRJMRB Otsu, N. (1979), A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66, https://doi.org/10.1109/TSMC.1979.4310076. Pogrebnoi, A.E. (2023), Estimation of Internal Wave Parameters in the Arctic Based on Synthetic Aperture Satellite Radar Data, Physical Oceanography, 30(1), 98–111, https://doi.org/10.29039/1573-160X-2023-1-98-111 EDN: SDEMBA Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, et al. (2012), Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484(7395), 502–505, https://doi.org/10.1038/nature10968. Shepherd, A., H. A. Fricker, and S. L. Farrell (2018), Trends and connections across the Antarctic cryosphere, Nature, 558(7709), 223–232, https://doi.org/10.1038/s41586-018-0171-6. EDN: YGJRPF Silva, T. A. M., and G. R. Bigg (2005), Computer-based identification and tracking of Antarctic icebergs in SAR images, Remote Sensing of Environment, 94(3), 287–297, https://doi.org/10.1016/j.rse.2004.10.002. Singh, K. N., R. K. Singh, M. Maisnam, et al. (2021), Detection of Two Recent Calving Events in Antarctica from SCATSAT-1, in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 439–442, IEEE, https://doi.org/10.1109/IGARSS47720.2021.9553306. Singh, K. N., M. Maisnam, R. K. Singh, et al. (2023), Spatio-temporal monitoring of the iceberg D28 using SCATSAT-1 data, Polar Record, 59, https://doi.org/10.1017/S0032247423000062. EDN: REBKFM Smith, J. A., A. G. C. Graham, A. L. Post, et al. (2019), The marine geological imprint of Antarctic ice shelves, Nature Communications, 10(1), https://doi.org/10.1038/s41467-019-13496-5. EDN: KDYYQL Stewart, A. L., and A. F. Thompson (2015), Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break, Geophysical Research Letters, 42(2), 432–440, https://doi.org/10.1002/2014GL062281. Stuart, K. M., and D. G. Long (2011), Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer, Deep Sea Research Part II: Topical Studies in Oceanography, 58(11–12), 1285–1300, https://doi.org/10.1016/j.dsr2.2010.11.004. Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood (2018), The Antarctic Slope Current in a Changing Climate, Reviews of Geophysics, 56(4), 741–770, https://doi.org/10.1029/2018RG000624. Walker, C. C., M. K. Becker, and H. A. Fricker (2021), A High Resolution, Three-Dimensional View of the D-28 Calving Event From Amery Ice Shelf With ICESat-2 and Satellite Imagery, Geophysical Research Letters, 48(3), https://doi.org/10.1029/2020GL091200. EDN: VXLPHM Wang, Q., S. Danilov, and J. Schröter (2009), Bottom water formation in the southern Weddell Sea and the influence of submarine ridges: Idealized numerical simulations, Ocean Modelling, 28(1–3), 50–59, https://doi.org/10.1016/j.ocemod.2008.08.003. Whitworth, T., A. H. Orsi, S.-J. Kim, W. D. Nowlin, and R. A. Locarnini (2013), Water Masses and Mixing Near the Antarctic Slope Front, pp. 1–27, American Geophysical Union, https://doi.org/10.1029/AR075p0001. Yu, Y., Z. Zhang, M. Shokr, et al. (2019), Automatically Extracted Antarctic Coastline Using Remotely-Sensed Data: An Update, Remote Sensing, 11(16), 1844, https://doi.org/10.3390/rs11161844. Zhu, T., X. Cui, and Y. Zhang (2021), Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data, Remote Sensing, 13(17), 3528, https://doi.org/10.3390/rs13173528. EDN: YGTYZA
Дополнительные файлы




