REMOTE RESEARCH OF ARCHAEOLOGICAL SITES OF THE SOUTHERN TRANS-URALS USING GEOPHYSICS AND MACHINE LEARNING

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The so-called “Country of Cities” discovered in the second half of the 20th century in the Southern Trans-Urals — more than two dozen fortified settlements of the Middle Bronze Age belonging to the Sintashta culture (about 3–2 thousand years BC) is a unique object of interdisciplinary research. In this paper the study of the architecture of these settlements is carried out by interpreting aerial photographs, space photographs and geophysical methods: magnetometry and areal electromagnetic profiling with the AEMP-14 induction system. The construction of orthophotoplans and a digital relief model is made based on UAV survey data and ground surveys using GNSS and tacheometry. Fundamentally new opportunities are provided by applying modern methods of detection, classification and segmentation of objects based on the use of convolutional neural networks to the obtained data. This paper presents and discusses the results of applying neural networks based on graphs and transformer architecture to the problem of 3d archaeological sites segmentation and methods of their detection based on residual neural networks and networks with transformer architecture.

Авторлар туралы

A. Vokhmintcev

Chelybinsk State University

ORCID iD: 0000-0002-2402-2963

A. Melnikov

Yugra Research Institute of Information Technologies; Yugra State University

ORCID iD: 0000-0002-1073-7108

N. Batanina

Chelybinsk State University

ORCID iD: 0000-0002-2555-6094
SPIN-код: 6866-7691

E. Kupriyanova

Chelybinsk State University

ORCID iD: 0000-0001-8842-9976
SPIN-код: 9089-4614

L. Muravyev

Institute of Geophysics UB of RAS

Email: mlev@mlev.ru
ORCID iD: 0000-0003-4423-0230
SPIN-код: 9869-2301
Scopus Author ID: 57200323443
ResearcherId: P-6854-2015
candidate of technical sciences

M. Romanov

Chelyabinsk state university

ORCID iD: 0009-0009-2209-4187

Әдебиет тізімі

  1. Epimakhov A. V., Berseneva N. A., Fedorova N. V. Fortification lines of the Kamennyi Ambar settlement // The Bronze age in the Karagaily-Ayat Region (Trans-Urals, Russia). Culture, Environment and Economy. — Bonn : Verlag Dr. Rudolf Habelt GmbH, 2021. — P. 101–158. — EDN: ADHHQM.
  2. Fedorova N. V., Noskevich V. V. Geophysical Researches at Belousovsky Copper Mine of the Bronze Age (Southern Urals) // Geoarchaeology and Archaeological Mineralogy. — Springer International Publishing, 2020. — P. 38–44. — doi: 10.1007/978-3-030-48864-2_6.
  3. Karin Y. G., Balkov E. V., Fadeev D. I., et al. Electromagnetic Profiling by Compact Apparatus: New Approach and Results of Application // Vestnik NSU. Series: Information Technologies. — 2018. — Vol. 16, no. 4. — P. 68–78. — doi: 10.25205/1818-7900-2018-16-4-68-78. — In Russian.
  4. Kolodiazhnyi M., Vorontsova A., Konushin A., et al. OneFormer3D: One Transformer for Unified Point Cloud Segmentation. — 2023. — doi: 10.48550/ARXIV.2311.14405.
  5. Mohammadi S. S., Wang Y., Bue A. D. Pointview-GCN: 3D Shape Classification With Multi-View Point Clouds // 2021 IEEE International Conference on Image Processing (ICIP). — IEEE, 2021. — P. 3103–3107. — doi: 10.1109/icip42928.2021.9506426.
  6. Narkhov E. D., Muravyev L. A., Sergeev A. V., et al. Applications of modern high-precision Overhauser magnetometers // Physics, Technologies and Innovation (PTI-2017): Proceedings of the IV International Young Researchers’ Conference. Vol. 1886. — AIP Conference Proceedings, 2017. — doi: 10.1063/1.5002972.
  7. Noskevich V., Fedorova N. Geophysical Studies of Wells in the Settlements of Konoplyanka 1 and Konoplyanka 2 (Bronze Age) // Interdisciplinaria Archaeologica Natural Sciences in Archaeology. — 2022. — Vol. XIII, no. 1. — P. 19–28. — doi: 10.24916/iansa.2022.1.2.
  8. Rong Y., Zhou H., Xia K., et al. RepKPU: Point Cloud Upsampling with Kernel Point Representation and Deformation // 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). — IEEE, 2024. — P. 21050–21060. — doi: 10.1109/cvpr52733.2024.01989.
  9. Schult J., Engelmann F., Hermans A., et al. Mask3D: Mask Transformer for 3D Semantic Instance Segmentation // 2023 IEEE International Conference on Robotics and Automation (ICRA). — IEEE, 2023. — P. 8216–8223. — doi: 10.1109/icra48891.2023.10160590.
  10. Šebek P., Pokorný Š., Vacek P., et al. Real3D-Aug: Point Cloud Augmentation by Placing Real Objects with Occlusion Handling for 3D Detection and Segmentation. — 2022. — doi: 10.48550/ARXIV.2206.07634.
  11. Te G., Hu W., Zheng A., et al. RGCNN: Regularized Graph CNN for Point Cloud Segmentation // Proceedings of the 26th ACM international conference on Multimedia. — ACM, 2018. — P. 746–754. — doi: 10.1145/3240508.3240621.
  12. Vokhmintcev A., Khristodulo O., Melnikov A., et al. Application of Dynamic Graph CNN* and FICP for Detection and Research Archaeology Sites // Analysis of Images, Social Networks and Texts. — Springer Nature Switzerland, 2024a. — P. 294–308. — doi: 10.1007/978-3-031-54534-4_21.
  13. Vokhmintcev A. V., Melnikov A. V., Romanov M. A., et al. Remote Research System of Archaeological Sites Using Deep Learning // Pattern Recognition and Image Analysis. — 2024b. — Vol. 34, no. 3. — P. 574–582. — doi: 10.1134/s105466182470038x.
  14. Wang Y., Sun Y., Liu Z., et al. Dynamic Graph CNN for Learning on Point Clouds // ACM Transactions on Graphics. — 2019. — Vol. 38, no. 5. — P. 1–12. — doi: 10.1145/3326362.
  15. Zdanovich G. B., Batanina I. M., Levit N. V., et al. Archaeological atlas of the Chelyabinsk region. Issue 1. Steppe-foreststeppe. Kizilsky district. — South Ural Book Publishing House, 2003. — 256 p. — In Russian.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Vokhmintcev A., Melnikov A., Batanina N., Kupriyanova E., Muravyev L., Romanov M., 2025

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.