2D TOMOGRAPHIC MAPS OF RAYLEIGH AND LOVE WAVES FOR ARMENIA AND ITS SURROUNDING AREAS

Capa

Citar

Texto integral

Resumo

This study aims to provide 2D tomography images of surface wave group velocity in Armenia and its neighboring regions within the Eurasian-Arabic plates, aiming to enhance the understanding of the shear velocity structure in the area. In this context, ∼ 516 earthquakes (M ≥ 3.5) recorded by 20 stations between 1999–2018 were analyzed, and the surface wave group velocity dispersion curves for each record (source-station path) were estimated. Subsequently, taking advantage of a 2D-linear inversion procedure, 2D tomography maps for periods of 5–80 s (Depth ≈ 180 km) were computed with a grid spacing of 0.2◦ × 0.5◦. The results of this research indicate that short-periods (5 ≤ T ≤ 25 s) are more influenced by shallow, ever-evolving deformations within various geological units, such as sedimentary basins. A minor low-velocity anomaly (Depth ≈ 27 km) is observed on the northwest slope of the Aragats volcano, which contrasts with the findings of earlier studies. For Rayleigh and Love waves, the North Armenia Block is covered by a high-velocity anomaly. The results for medium periods reveal the presence of very-high-velocity anomalies in some geological units (e.g., Lesser Caucasus), aligning with the ongoing subduction processes. In contrast, very lowvelocity anomalies reflect the uppermost mantle information, revealing an extremely thin lithosphere accompanied with a hot asthenosphere. The findings for long-periods of Love and Rayleigh waves in Armenia reveal an almost uniform velocity distribution pattern, along with very-low-velocity anomalies in the uppermost mantle, attributed to a thin lithosphere or the lack of lithospheric mantle in most units of the study region. The results demonstrate an acceptable accordance with known geological features in the Eurasian-Arabic ongoing collision zone. Overall, the main strengths of this paper lie in the application of a tomographic technique utilizing an important data set. The findings have the potential to provide new insights into the Armenian region and its surrounding areas.

Sobre autores

Seyed Abrehdari

Institute of Geophysics and Engineering Seismology, National Academy of Sciences; Institute of Geophysics, University of Tehran; Institute of Seismology, University of Helsinki

Email: abrehdari@ut.ac.ir
ORCID ID: 0009-0009-9694-974X

J. Karapetyan

Institute of Geophysics and Engineering Seismology, National Academy of Sciences

Email: jon_iges@mail.ru
ORCID ID: 0000-0001-5032-2241

Habib Rahimi

Institute of Geophysics, University of Tehran

Email: rahimih@ut.ac.ir
ORCID ID: 0000-0002-2085-1043

E. Geodakyan

Institute of Geophysics and Engineering Seismology, National Academy of Sciences

Email: geodakyan.e@mail.ru

Bibliografia

  1. Abrehdari, S. H., A. S. Hossein, J. K. Karapetyan, et al. (2022), The Caucasus Territory Hot-Cold Spots Determination and Description Using 2D Surface Waves Tomography, Russian Journal of Earth Sciences, 22(5), ES5004, https://doi.org/10.2205/2022ES000814. EDN: PKHDHG
  2. Abrehdari, S. H., A. S. Hossein, J. K. Karapetyan, et al. (2023), Tectonic Activities Description in the Ongoing Collision Zone of the Eurasia-Arabia Plates Using 2D Surface Waves Tomography, Russian Journal of Earth Sciences, 23(2), ES2004, https://doi.org/10.2205/2023ES000835. EDN: VNBLON
  3. Adamia, S., G. Zakariadze, T. Chkhotua, et al. (2011), Geology of the Caucasus: A Review, Turkish Journal of Earth Sciences, 20(5), 489–544, https://doi.org/10.3906/yer-1005-11. EDN: OIBUCJ
  4. Adamiya, S. A., M. A. Alekhidze, B. K. Balavadze, et al. (1992), The Caucasus: Integrated Geophysical Investigations of the Lithosphere, International Geology Review, 34(3), 249–263, https://doi.org/10.1080/00206819209465601.
  5. Avagyan, A., M. Sosson, A. Karakhanian, et al. (2010), Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions, Geological Society, London, Special Publications, 340(1), 393–408, https://doi.org/10.1144/SP340.17. EDN: PKRGKV
  6. Aydın, I., H. I. Karat, and A. Koçak (2005), Curie-point depth map of Turkey, Geophysical Journal International, 162(2), 633–640, https://doi.org/10.1111/j.1365-246x.2005.02617.x. EDN: MAUALB
  7. Backus, G., and F. Gilbert (1968), The Resolving Power of Gross Earth Data, Geophysical Journal International, 16(2), 169–205, https://doi.org/10.1111/j.1365-246x.1968.tb00216.x.
  8. Beccaluva, L., A. Azzouni-Sekkal, A. Benhallou, et al. (2007), Intracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): Evidence from HIMU metasomatised lherzolite mantle xenoliths, Earth and Planetary Science Letters, 260(3–4), 482–494, https://doi.org/10.1016/j.epsl.2007.05.047.
  9. Bedle, H., and S. V. D. Lee (2009), S velocity variations beneath North America, Journal of Geophysical Research: Solid Earth, 114(B7), https://doi.org/10.1029/2008jb005949.
  10. Bochud, M. (2011), Tectonics of the eastern greater caucasus in Azerbaijan, Université de Fribourg DOKPE.
  11. Bune, V. I. (1955), On the classification of earthquakes based on the energy of elastic waves emitted from their source, Academy of Sciences of the Tajik SSR, 14.
  12. Chen, Y., J. Badal, and J. Hu (2010), Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas, Pure and Applied Geophysics, 167(10), 1171–1203, https://doi.org/10.1007/s00024-009-0040-1. EDN: UVBLYQ
  13. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophysical Journal International, 101(2), 425–478, https://doi.org/10.1111/j.1365-246x.1990.tb06579.x. EDN: XVTQSE
  14. Ditmar, P. G., and T. B. Yanovskaya (1987), Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities, Izvestia, Phys. Solid Earth, 23(6), 470–477.
  15. Dziewonski, A., S. Bloch, and M. Landisman (1969), A technique for the analysis of transient seismic signals, Bulletin of the Seismological Society of America, 59(1), 427–444, https://doi.org/10.1785/bssa0590010427.
  16. Echle, W. (1974), Zur Mineralogie und petrogeneses jungtertiarer tuffitischer Sedimente im Neogen-Becken nördlich Mihalıççık (Westanatolien, Türkei), Neues Jahrbuch für Mineralogie Abhandlungen, 121, 43–84 (in German).
  17. Eppelbaum, L., and B. Khesin (2012), Tectonical-Geophysical Setting of the Caucasus, in Geophysical Studies in the Caucasus, pp. 5–37, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-540-76619-3_2. EDN: NXGZKP
  18. Golonka, J. (2004), Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, Tectonophysics, 381(1–4), 235–73, https://doi.org/10.1016/j.tecto.2002.06.004. EDN: MFESMX
  19. Gurbanov, G. H., I. I. Mardanov, and A. K. Gurbanov (2024), Characteristic of the scree formation process and influence on the development of floods in Nakchivan Autonomous Republic, Journal of Geology, Geography and Geoecology, 33(2), 263–273, https://doi.org/10.15421/112424. EDN: AFVMJH
  20. Herrmann, R. B. (1973), Some aspects of band-pass filtering of surface waves, Bulletin of the Seismological Society of America, 63(2), 663–671, https://doi.org/10.1785/bssa0630020663.
  21. Herrmann, R. B. (2013), Computer Programs in Seismology: An Evolving Tool for Instruction and Research, Seismological Research Letters, 84(6), 1081–1088, https://doi.org/10.1785/0220110096.
  22. Huang, Z., W. Su, Y. Peng, Y. Zheng, and H. Li (2003), Rayleigh wave tomography of China and adjacent regions, Journal of Geophysical Research: Solid Earth, 108(B2), https://doi.org/10.1029/2001JB001696.
  23. Ismail-Zadeh, A., S. Adamia, A. Chabukiani, et al. (2020), Geodynamics, seismicity, and seismic hazards of the Caucasus, Earth-Science Reviews, 207, 103,222, https://doi.org/10.1016/j.earscirev.2020.103222. EDN: HKOMLD
  24. Jackson, J., K. Priestley, M. Allen, and M. Berberian (2002), Active tectonics of the South Caspian Basin, Geophysical Journal International, 148(2), 214–245, https://doi.org/10.1046/j.1365-246x.2002.01588.x. EDN: LYZRHF
  25. Jrbashyan, R., G. Chlingaryan, Y. U. Kagramanov, et al. (2001), Geology of Meso-Cenozoic basins in Central Armenia, with comment on indications of hydrocarbons, Search and Discovery Article #30007.
  26. Karakhanian, A. S., V. G. Trifonov, H. Philip, et al. (2004), Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran, Tectonophysics, 380(3–4), 189–219, https://doi.org/10.1016/j.tecto.2003.09.020. EDN: LIIPZR
  27. Keskin, M. (2003), Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysical Research Letters, 30(24), https://doi.org/10.1029/2003GL018019.
  28. Khuduzade, A. I., and A. Jafarov (2017), Structural tectonic features of the south-eastern part of the Greater Caucasus the pre-Caspian GUBA as an example of the NQR, Seismoprognosis Observations in the Territory of Azerbaijan, 14(1).
  29. Klett, T. R. (2016), Geology and assessment of the undiscovered, technically recoverable petroleum resources of Armenia, 2013, US Geological Survey, https://doi.org/10.3133/ds69pp.
  30. Kornev, G. P. (1963), Minor intrusions and sills in the eastern Nakhichevan A.S.S.R. and the tectonics of their formations, International Geology Review, 5(1), 28–37, https://doi.org/10.1080/00206816309474677. EDN: XLXZMD
  31. Koulakov, I., I. Zabelina, I. Amanatashvili, and V. Meskhia (2012), Nature of orogenesis and volcanism in the Caucasus region based on results of regional tomography, Solid Earth, 3(2), 327–37, https://doi.org/10.5194/sed-4-641-2012. doi: 10.5194/se-3-327-2012; EDN: RGCGVH
  32. Lebedev, V. A., I. V. Chernyshev, K. N. Shatagin, et al. (2013), The quaternary volcanic rocks of the Geghama highland, Lesser Caucasus, Armenia: Geochronology, isotopic Sr-Nd characteristics, and origin, Journal of Volcanology and Seismology, 7(3), 204–229, https://doi.org/10.1134/s0742046313030044. EDN: RFHVZT
  33. Legendre, C. P., T. L. Tseng, Y. N. Chen, et al. (2017), Complex deformation in the Caucasus region revealed by ambient noise seismic tomography, Tectonophysics, 712–713, 208–220, https://doi.org/10.1016/j.tecto.2017.05.024. EDN: XNCEZF
  34. Milyukov, V., E. Rogozhin, A. Gorbatikov, et al. (2018), Contemporary State of the Elbrus Volcanic Center (The Northern Caucasus), Pure and Applied Geophysics, 175(5), 1889–1907, https://doi.org/10.1007/s00024-017-1595-x. EDN: XXHSCT
  35. Mortezanejad, G., H. Rahimi, F. Romanelli, and G. F. Panza (2018), Lateral variation of crust and upper mantle structures in NW Iran derived from surface wave analysis, Journal of Seismology, 23(1), 77–108, https://doi.org/10.1007/s10950-018-9794-1. EDN: LYTPNN
  36. Pasyanos, M. E., W. R. Walter, and S. E. Hazler (2001), A Surface Wave Dispersion Study of the Middle East and North Africa for Monitoring the Comprehensive Nuclear-Test-Ban Treaty, in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves, pp. 1445–1474, Birkhäuser Basel, https://doi.org/10.1007/978-3-0348-8264-4_7.
  37. Perkins, S. (2019), Seismic tomography uses earthquake waves to probe the inner Earth, Proceedings of the National Academy of Sciences, 116(33), 16,159–16,161, https://doi.org/10.1073/pnas.1909777116.
  38. Rahimi, H. (2010), Elastic and anelastic regional structures for crust and upper mantle in Iran (PhD thesis), International Institute of earthquake Engineering and seismology (IIEES).
  39. Raykova, R., and S. Nikolova (2007), Tomography and velocity structure of the crust and uppermost mantle in southeastern Europe obtained from surface wave analysis, Studia Geophysica et Geodaetica, 51(1), 165–184, https://doi.org/10.1007/s11200-007-0008-5. EDN: LYZVAD
  40. Ritzwoller, M. H., and A. L. Levshin (1998), Eurasian surface wave tomography: Group velocities, Journal of Geophysical Research: Solid Earth, 103(B3), 4839–4878, https://doi.org/10.1029/97JB02622.
  41. Ruppel, C., and M. McNutt (1990), Regional compensation of the Greater Caucasus mountains based on an analysis of Bouguer gravity data, Earth and Planetary Science Letters, 98(3–4), 360–379, https://doi.org/10.1016/0012-821x(90)90037-x. EDN: XXZYHQ
  42. Skobeltsyn, G. A., R. Mellors, R. Gök, et al. (2014), Upper mantle S wave velocity structure of the East Anatolian-Caucasus region, Tectonics, 33(3), 207–221, https://doi.org/10.1002/2013TC003334. EDN: SPNUVR
  43. Sugden, P. J., I. P. Savov, M. Wilson, K. Meliksetian, G. Navasardyan, and R. Halama (2018), The Thickness of the Mantle Lithosphere and Collision-Related Volcanism in the Lesser Caucasus, Journal of Petrology, 60(2), 199–230, https://doi.org/10.1093/petrology/egy111. EDN: YFSVUT
  44. Sun, Y., M. N. Toksöz, R. J. Martin, et al. (2012), Crustal and uppermost mantle structure of Caucasus and surrounding regions, Earthquake Science, 25(5–6), 505–515, https://doi.org/10.1007/s11589-012-0874-y. EDN: PSWRJB
  45. Thybo, H. (2006), The heterogeneous upper mantle low velocity zone, Tectonophysics, 416(1–4), 53–79, https://doi.org/10.1016/j.tecto.2005.11.021. EDN: LAKAYI
  46. Trifonov, V. G., and V. I. Makarov (1988), Geologo-geomorphological study of modern tectonic movements, Journal of Geodynamics, 10(2–4), 309–320, https://doi.org/10.1016/0264-3707(88)90037-3. EDN: XLKOEU
  47. Tseng, T. L., H. C. Hsu, P. R. Jian, et al. (2016), Focal mechanisms and stress variations in the Caucasus and Northeast Turkey from constraints of regional waveforms, Tectonophysics, 691, 362–374, https://doi.org/10.1016/j.tecto.2016.10.028. EDN: XURFOF
  48. Urban, L., A. Cichowicz, and F. Vaccari (1993), Computation of analytical partial derivatives of phase and group velocities for Rayleigh waves with respect to structural parameters, Studia Geophysica et Geodaetica, 37(1), 14–36, https://doi.org/10.1007/bf01613919.
  49. Wessel, P., and W. H. F. Smith (1995), New version of the generic mapping tools, Eos, Transactions American Geophysical Union, 76(33), 329–329, https://doi.org/10.1029/95EO00198.
  50. Yanovskaya, T. B. (1997), Resolution estimation in the problems of seismic ray tomography, Izvestiya, Physics of the Solid Earth, 33(9), 762–765. EDN: FAZKJC
  51. Yanovskaya, T. B., and P. G. Ditmar (1990), Smoothness criteria in surface wave tomography, Geophysical Journal International, 102(1), 63–72, https://doi.org/10.1111/j.1365-246x.1990.tb00530.x. EDN: WIXDWO
  52. Yanovskaya, T. B., E. S. Kizima, and L. M. Antonova (1998), Structure of the crust in the Black Sea and adjoining regions from surface wave data, Journal of Seismology, 2(4), 303–316, https://doi.org/10.1023/a:1009716017960. EDN: LFCNKN
  53. Zabelina, I., I. Koulakov, I. Amanatashvili, et al. (2016), Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography, Journal of Asian Earth Sciences, 119, 87–99, https://doi.org/10.1016/j.jseaes.2016.01.010. EDN: SFSKZN

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Abrehdari S.H., Karapetyan J., Rahimi H., Geodakyan E., 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.