SHORT-TERM HIGH-RESOLUTION WEATHER FORECASTING IN THE CITY OF KHABAROVSK, RUSSIA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Experimental short-term numerical weather prediction system based on the Weather Research and Forecasting (WRF) model with grid spacing of 1 km for the city of Khabarovsk, Russia is presented. Single-layer urban canopy parametrization is used in the model runs and takes into consideration urban land use. Urban land surface consists of three types: low-rise, high-rise buildings and industrial zones. Niceties of forecasts’ interpretation in a large city based on data of a high-resolution numerical grid are considered. Simulations of the WRF model with the grid spacing of 1 km have shown better quality of prediction in the city than forecasts on the grid spacing of 5 km for the period of time from June to December of 2023. Mean absolute errors of the forecasting speed and direction of surface wind with a velocity above 10 m/s are 2.9 m/s and 3.2 m/s, and 14∘ and 32∘ and absolute error of the forecasting air temperature is 1.6∘ and 3.1∘ for the WRF model with the grid spacing of 1 and 5 km respectively for the considered period of time.

Авторлар туралы

S. Romanskiy

Far Eastern Regional Hydrometeorological Research Institute

Email: khvstas@gmail.com
ORCID iD: 0000-0001-6613-6881
SPIN-код: 6967-4124
Scopus Author ID: 56960474000
ResearcherId: I-5337-2015
candidate of physical and mathematical sciences

E. Verbitskaya

Far Eastern Regional Hydrometeorological Research Institute

Әдебиет тізімі

  1. Григорьев В. А., Огородников И. А. Проблемы экологизации городов в мире, России, Сибири: Аналит. обзор. — Новосибирск : Экология. Серия аналитических обзоров мировой литературы, Вып. 63. ГПНТБ СО РАН, 2001. — 152 с. — EDN: FMJFFB.
  2. Кузнецова И. Н., Брусова Н. Е., Нахаев М. И. Городской остров тепла в Москве: определение, границы, изменчивость // Метеорология и гидрология. — 2017. — № 5. — С. 49—61. — EDN: YNWCKX.
  3. Ривин Г. С., Розинкина И. А., Вильфанд Р. М. и др. Разработка оперативной системы численного прогноза погоды и условий возникновения опасных явлений с высокой детализацией для Московского мегаполиса // Метеорология и гидрология. — 2020. — № 7. — С. 5—19. — EDN: RVBBLZ.
  4. Романский С. О., Вербицкая Е. М. Краткосрочный численный прогноз погоды высокого пространственного разрешения по Владивостоку на базе модели WRF-ARW // Вестник Дальневосточного отделения Российской академии наук. — 2014. — 5(177). — С. 48—57. — EDN: TNDODH.
  5. Романский С. О., Вербицкая Е. М. Сильные шквалистые ветры в Южно-Сахалинске летом 2014 г. // Геосферные исследования. — 2023. — № 4. — С. 141—154. — doi: 10.17223/25421379/29/10. — EDN: LZBUBM.
  6. Тарасова М. А., Варенцов М. И., Степаненко В. М. Параметризации взаимодействия атмосферы с городской поверхностью: обзор и перспективы развития // Известия Российской академии наук. Физика атмосферы и океана. — 2023. — Т. 59, № 2. — С. 127—148. — doi: 10.31857/S0002351523020062. EDN: HPPHSS
  7. Buchhorn M., Smets B., Bertels L., et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe. — 2020. — doi: 10.5281/ZENODO.3939050. — (visited on: 17.11.2022).
  8. Chen F., Kusaka H., Bornstein R., et al. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems // International Journal of Climatology. — 2011. — Vol. 31, no. 2. — P. 273–288. — doi: 10.1002/joc.2158.
  9. Dowell D. C., Alexander C. R., James E. P., et al. The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I: Motivation and System Description // Weather and Forecasting. — 2022. — Vol. 37, no. 8. — P. 1371–1395. — doi: 10.1175/waf-d-21-0151.1. EDN: EXHVMO
  10. Garuma G. F. Review of urban surface parameterizations for numerical climate models // Urban Climate. — 2018. — Vol. 24. — P. 830–851. — doi: 10.1016/j.uclim.2017.10.006.
  11. Hong Kong Observatory. Numerical modelling for weather prediction in Hong Kong. — 2022. — URL: https://www.hko.gov.hk/en/wservice/tsheet/nwp.htm ; (visited on: 17.01.2024).
  12. Jeworrek J., West G., Stull R. W. WRF Precipitation Performance and Predictability for Systematically Varied Parameterizations over Complex Terrain // Weather and Forecasting. — 2021. — Vol. 36, no. 3. — P. 893–913. — doi: 10.1175/waf-d-20-0195.1. EDN: DJKQAD
  13. Kim G., Lee J., Lee M.-I. Impacts of urbanization on atmospheric circulation and aerosol transport in a coastal environment simulated by the WRF-Chem coupled with urban canopy model // Atmospheric Environment. — 2021. — Vol. 249. — P. 118253. — doi: 10.1016/j.atmosenv.2021.118253. EDN: CMFKWL
  14. Kusaka H., Kondo H., Kikegawa Y., et al. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models // Boundary-Layer Meteorology. — 2001. — Vol. 101, no. 3. — P. 329–358. — doi: 10.1023/a:1019207923078. EDN: ARTEXL
  15. Kwok Y. T., Ng Y. Y. E. Trends, topics, and lessons learnt from real case studies using mesoscale atmospheric models for urban climate applications in 2000-2019 // Urban Climate. — 2021. — Vol. 36. — P. 100785. — doi: 10.1016/j.uclim.2021.100785. EDN: XBJMFK
  16. Lin Y., Wang C., Yan J., et al. Observation and Simulation of Low-Level Jet Impacts on 3D Urban Heat Islands in Beijing: A Case Study // Journal of the Atmospheric Sciences. — 2022. — Vol. 79, no. 8. — P. 2059–2073. — doi: 10.1175/jas-d-21-0245.1. EDN: YPIPHL
  17. Masson V., Lemonsu A., Hidalgo J., et al. Urban Climates and Climate Change // Annual Review of Environment and Resources. — 2020. — Vol. 45, no. 1. — P. 411–444. — doi: 10.1146/annurev-environ-012320-083623. EDN: WLKKFX
  18. Mills G., Molina L. T., Schluenzen H., et al. Guidance on Integrated Urban Hydrometeorological, Climate and Environment Services. Vol. II: Demonstration Cities. — Geneva, Switzerland : Publications Board World Meteorological Organization, 2021. — 166 p.
  19. Shin H. H., Dudhia J. Evaluation of PBL Parameterizations in WRF at Subkilometer Grid Spacings: Turbulence Statistics in the Dry Convective Boundary Layer // Monthly Weather Review. — 2016. — Mar. — Vol. 144, no. 3. — P. 1161–1177. — doi: 10.1175/mwr-d-15-0208.1.
  20. Siuta D., West G., Stull R. W. WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain // Weather and Forecasting. — 2017. — Vol. 32, no. 2. — P. 493–509. — doi: 10.1175/waf-d-16-0120.1.
  21. Skamarock W. C., Klemp J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications // Journal of Computational Physics. — 2007. — Vol. 227, no. 7. — P. 3465–3485. — doi: 10.1016/j.jcp.2007.01.037. EDN: MTVBDN
  22. Solbakken K., Birkelund Y., Samuelsen E. M. Evaluation of surface wind using WRF in complex terrain: Atmospheric input data and grid spacing // Environmental Modelling & Software. — 2021. — Vol. 145. — P. 105182. — doi: 10.1016/j.envsoft.2021.105182.
  23. Wang C.-C. On the Calculation and Correction of Equitable Threat Score for Model Quantitative Precipitation Forecasts for Small Verification Areas: The Example of Taiwan // Weather and Forecasting. — 2014. — Vol. 29, no. 4. — P. 788–798. — doi: 10.1175/waf-d-13-00087.1.
  24. Wang L., Li D. Urban Heat Islands during Heat Waves: A Comparative Study between Boston and Phoenix // Journal of Applied Meteorology and Climatology. — 2021. — Vol. 60, no. 5. — P. 621–641. — doi: 10.1175/JAMC-D-20-0132.1. EDN: JPLQAI

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Romanskiy S.O., Verbitskaya E.M., 2025

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.