STUDY OF THE INFLUENCE OF FACTORS DETERMINING THE RESULTS OF GEOPHYSICAL SURVEYS IN TERRITORIES CONTAMINATED WITH LIGHT NON-AQUEOUS PHASE LIQUID

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

To solve environmental problems in the search for hydrocarbon pollution, geophysics is often used. In contaminated sites, knowledge of the geological structure and hydrogeological conditions, as well as the qualitative and quantitative characteristics of pollution, is essential for risk assessment and site remediation planning. The article discusses the influence of various factors on the formation of anomalies detected by methods of shallow geophysics in the process of studying the pollution of the geological environment with oil products. The main purpose of such work is the detection, contouring and determination of the migration routes of light oil products. Understanding the processes occurring in the subsurface space during the distribution of oil products helps to correctly compare the variations in physical properties identified from geophysical data and the location of contaminated areas. One of the main factors affecting the results of geophysical surveys is the residence time of oil products in soils. The nature of geophysical anomalies changes and is a response from a complex multifactorial environment. Also, among the factors affecting the nature of geophysical anomalies, the following can be distinguished: the activity of microorganisms, redox reactions, the presence of near-surface heterogeneities, temperature, signal shredding, humidity and composition of soils in the aeration zone, fluctuations in the level of groundwater, the concentration of hydrocarbons, source of petroleum products. The paper also describes several generalized models of the distribution of hydrocarbon pollution, each of which can be used to solve the tasks set, and also be a useful tool for predicting the distribution of oil products and modeling geophysical responses from a multifactorial environment. At present, the most popular model is the “natural source zone depletion”, according to which methanogenesis plays an important role in technogenically polluted territories, as a result of which gases in anomalous concentrations are released from areas where hydrocarbons are processed by microorganisms as secondary waste products of bacteria. The authors also consider a model that is more typical for objects located on the banks of rivers or lakes. Here, the distribution model of light oil products is subdivided into three zones (donor zone, transit zone, and secondary accumulation zone), in which the processes of distribution and accumulation of oil products take place. Thus, a comprehensive study of the processes occurring in soils during oil spills and the use of theoretical models of pollutant migration can facilitate the work on the ecological study of soils contaminated with oil products.

Авторлар туралы

Tatiana Mingaleva

Saint Petersburg Mining University

Email: tatiana.mingaleva@bk.ru
Department of Geophysics

Sergey Shakuro

Alexey Egorov

Saint Petersburg Mining University

Department of Geophysics, professor, doctor of geological and mineralogical sciences

Әдебиет тізімі

  1. Алексеев И. В., Дашко Р. Э. К вопросу о роли биокоррозионных процессов в подземной среде мегаполисов // Инженерная геология. — 2016. — № 1. — С. 22—29.
  2. Глазунов В. В., Агеев А. С., Горелик Г. Д. и др. Результаты комплексных геофизических исследований по поиску склепов на территории загородного некрополя Херсонеса Таврического в Карантинной балке // Записки Горного института. — 2021. — Т. 247. — С. 1—9. — doi: 10.31897/PMI.2021.1.2.
  3. Григорьев Г. С., Салищев М. В., Сенчина Н. П. О применимости способа электромагнитного мониторинга гидроразрыва пласта // Записки Горного института. — 2021. — Т. 250. — С. 492—500. — doi: 10.31897/PMI.2021.4.2.
  4. Гупало В. С. Приоритетные параметры физических процессов в массиве пород при определении безопасности захоронения радиоактивных отходов // Записки Горного института. — 2020. — Т. 241. — С. 118. — doi: 10.31897/pmi.2020.1.118.
  5. Максимович Н. Г., Хайрулина Е. А. Геохимические барьеры и охрана окружающей среды: учебное пособие. — Пермь : Перм. гос. у-т., 2011. — С. 248.
  6. Мовчан И. Б., Шайгаллямова З. И., Яковлева А. А. Выявление факторов структурного контроля коренных золоторудных проявлений методом беспилотной аэромагниторазведки на примере Нерюнгринского района Якутии // Записки Горного института. — 2022. — Т. 254. — 217—233. — doi: 10.31897/pmi.2022.23.
  7. Пашкевич М. А., Бек Д., Матвеева В. А. и др. Биогеохимическая оценка состояния почвенно-растительного покрова в промышленных, селитебных и рекреационных зонах СанктПетербурга // Записки Горного института. — 2020. — Т. 241. — С. 125. — doi: 10.31897/pmi.2020.1.125.
  8. Путилина В. С., Галицкая И. В., Юганова Т. И. Трансформация нефти и нефтепродуктов в почвах, горных породах, подземных водах. Загрязнение, инфильтрация, миграция, деградация. Метаболиты // Экология. Серия аналитических обзоров мировой литературы. — 2019. — Т. 108. — С. 111.
  9. Рязанцев П. А., Нилова М. В., Белохвостик Д. М. Мониторинг миграции нефтепродукта в лабораторных условиях с использованием методики электротомографии // Геоэкология, инженерная геология, гидрогеология, геокриология. — 2017. — № 6. — С. 83—94.
  10. Сарапулова Г. И. Геохимический подход в оценке воздействия техногенных объектов на почвы // Записки Горного института. — 2020. — Т. 243. — С. 388. — doi: 10.31897/pmi.2020.3.388.
  11. Титов К. В., Ильин Ю. Т., Коносавский П. К. и др. Изменение геофизических свойств загрязненного нефтепродуктами песка при бактериальном воздействии // Геоэкология, инженерная геология, гидрогеология, геокриология. — 2012. — №5. — С. 455—469.
  12. Шулаев Н. С., Пряничникова В. В., Кадыров Р. Р. Закономерности электрохимической очистки нефтезагрязненных грунтов // Записки Горного института. — 2021. — Т. 252. — С. 937— 946. — doi: 10.31897/PMI.2021.6.15.
  13. Abdel Aal G. Z., Atekwana E. A., Slater L. D., et al. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments // Geophysical Research Letters. — 2004. — Vol. 31, no. 12. — P. L12505. — doi: 10.1029/2004gl020030.
  14. Amos R. T., Mayer K. U., Bekins B. A., et al. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface // Water Resources Research. — 2005. — Vol. 41, no. 2. — W02001. — doi: 10.1029/2004WR003433.
  15. Atekwana E. A., Atekwana E., Legall F. D., et al. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer // Journal of Contaminant Hydrology. — 2005. — Nov. — Vol. 80, no. 3/4. — P. 149–167. — doi: 10.1016/j.jconhyd.2005.06.009.
  16. Atekwana E. A., Atekwana E. A., Rowe R. S., et al. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon // Journal of Applied Geophysics. — 2004. — Vol. 56, no. 4. — P. 281–294. — doi: 10.1016/j.jappgeo.2004.08.003.
  17. Atekwana E. A., Atekwana E. A. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review // Surveys in Geophysics. — 2010. — Vol. 31, no. 2. — P. 247–283. — doi: 10.1007/s10712-009-9089-8.
  18. Che-Alota V., Atekwana E. A., Atekwana E. A., et al. Temporal geophysical signatures from contaminant-mass remediation // Geophysics. — 2009. — Vol. 74, no. 4. — B113–B123. — doi: 10.1190/1.3139769.
  19. Deceuster J., Kaufmann O. Improving the delineation of hydrocarbon-impacted soils and water through induced polarization (IP) tomographies: A field study at an industrial waste land // Journal of Contaminant Hydrology. — 2012. — Vol. 136/137. — P. 25–42. — doi: 10.1016/j.jconhyd.2012.05.003.
  20. DeRyck S. M., Redman J. D., Annan A. P. Geophysical Monitoring Of A Controlled Kerosene Spill // 6th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. — European Association of Geoscientists & Engineers, 2020. — DOI: pdb.209.1993_003.
  21. Essaid H. I., Bekins B. A., Herkelrath W. N., et al. Crude Oil at the Bemidji Site: 25 Years of Monitoring, Modeling, and Understanding // Ground Water. — 2011. — Vol. 49, no. 5. — P. 706– 726. — doi: 10.1111/j.1745 6584.2009.00654.x.
  22. Fiori A., Benedetto A., Romanelli M. Application of the effective medium approximation for determining water contents through GPR in coarse-grained soil materials // Geophysical Research Letters. — 2005. — Vol. 32, no. 9. — P. L09404. — doi: 10.1029/2005GL022555.
  23. Flores Orozco A., Micić V., Bücker M., et al. Complex-conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection // Geophysical Journal International. — 2019. — June. — Vol. 218, no. 3. — P. 1838–1852. — doi: 10.1093/gji/ggz255.
  24. Flores Orozco A., Williams K. H., Long P. E., et al. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer // Journal of Geophysical Research: Biogeosciences. — 2011. — Vol. 116. — G03001. — doi: 10.1029/2010JG001591.
  25. Garg S., Newell C. J., Kulkarni P. R., et al. Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change // Groundwater Monitoring & Remediation. — 2017. — Vol. 37, no. 3. — P. 62–81. — doi: 10.1111/gwmr.12219.
  26. Giampaolo V., Rizzo E., Titov K., et al. Selfpotential monitoring of a crude oil-contaminated site (Trecate, Italy) // Environmental Science and Pollution Research. — 2014. — Vol. 21, no. 15. — P. 8932–8947. — doi: 10.1007/s11356-013-2159-y.
  27. Gieg L. M., Fowler S. J., Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants // Current Opinion in Biotechnology. — 2014. — Vol. 27. — P. 21–29. — (Energy biotechnology, Environmental biotechnology). — doi: 10.1016/j.copbio.2013.09.002.
  28. Griebler C., Lueders T. Microbial biodiversity in groundwater ecosystems // Freshwater Biology. — 2009. — Vol. 54, no. 4. — P. 649–677. — doi: 10.1111/j.1365-2427.2008.02013.x.
  29. Irianni-Renno M., Akhbari D., Olson M. R., et al. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body // Applied Microbiology and Biotechnology. — 2016. — Vol. 100, no. 7. — P. 3347–3360. — doi: 10.1007/s00253-015-7106-z.
  30. Johansson S., Fiandaca G., Dahlin T. Influence of non-aqueous phase liquid configuration on induced polarization parameters: Conceptual models applied to a time-domain field case study // Journal of Applied Geophysics. — 2015. — Vol. 123. — P. 295–309. — doi: 10.1016/j.jappgeo.2015.08.010.
  31. Khan F. I., Husain T., Hejazi R. An overview and analysis of site remediation technologies // Journal of Environmental Management. — 2004. — Vol. 71, no. 2. — P. 95–122. — doi: 10.1016/j.jenvman.2004.02.003
  32. Kulkarni P. R., King D. C., McHugh T. E., et al. Impact of Temperature on Groundwater Source Attenuation Rates at Hydrocarbon Sites // Groundwater Monitoring & Remediation. — 2017. — Vol. 37, no. 3. — P. 82–93. — doi: 10.1111/gwmr.12226
  33. Martinho E., Almeida F., Senos Matias M. An experimental study of organic pollutant effects on time domain induced polarization measurements // Journal of Applied Geophysics. — 2006. — Vol. 60, no. 1. — P. 27–40. — doi: 10.1016/j.jappgeo.2005.11.003.
  34. Meckenstock R. U., Netzer F. von, Stumpp C., et al. Water droplets in oil are microhabitats for microbial life // Science. — 2014. — Vol. 345, no. 6197. — P. 673–676. — doi: 10.1126/science.1252215.
  35. Mellage A., Smeaton C. M., Furman A., et al. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments // Environmental Science & Technology. — 2018. — Vol. 52, no. 4. — P. 2081–2090. — doi: 10.1021/acs.est.7b04420.
  36. Miller A. A., Gorelik G. D., Budanov L. M. Substantiation of the Optimal Gis Complex for the Allocation of Water-Containing Reservoirs on the Example of the Analysis of Well Logging Results in the Leningrad Region. — 2019. — doi: 10.3997/2214-4609.201901693.
  37. Naudet V., Revil A., Bottero J.-Y., et al. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater // Geophysical Research Letters. — 2003. — Vol. 30, no.21. — P. 2091. — doi: 10.1029/2003GL018096.
  38. Ng G.-H. C., Bekins B. A., Cozzarelli I. M., et al. Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN // Water Resources Research. — 2015. — Vol. 51, no. 6. — P. 4156– 4183. — doi: 10.1002/2015WR016964.
  39. Ntarlagiannis D., Yee N., Slater L. On the low-frequency electrical polarization of bacterial cells in sands // Geophysical Research Letters. — 2005. — Vol. 32, no. 24. — P. L24402. — doi: 10.1029/2005GL024751.
  40. Rosenberry D. O., Glaser P. H., Siegel D. I. The hydrology of northern peatlands as affected by biogenic gas: current developments and research needs // Hydrological Processes. — 2006. — Vol. 20, no. 17. — P. 3601–3610. — doi: 10.1002/hyp.6377.
  41. Sauck W. A. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments // Journal of Applied Geophysics. — 2000. — Vol. 44, no. 2. — P. 151–165. — doi: 10.1016/S0926-9851(99)00021-X.
  42. Schmutz M., Blondel A., Revil A. Saturation dependence of the quadrature conductivity of oilbearing sands // Geophysical Research Letters. —2012. — Vol. 39, no. 3. — P. L03402. — doi: 10.1029/2011GL050474.
  43. Shestakov A. K., Sadykov R. M., Petrov P. A. Multifunctional crust breaker for automatic alumina feeding system of aluminum reduction cell // E3S Web Conf. — 2021. — Vol. 266. — P. 09002. — doi: 10.1051/e3sconf/202126609002.
  44. Smith K. A., Ball T., Conen F., et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes // European Journal of Soil Science. — 2018. — Vol. 69, no. 1. — P. 10–20. — doi: 10.1111/ejss.12539.
  45. Spokas K. A., Bogner J. E. Limits and dynamics of methane oxidation in landfill cover soils // Waste Management. — 2011. — Vol. 31, no. 5. —P. 823–832. — doi: 10.1016/j.wasman.2009.12.018.
  46. Suthersan S., Koons B., Schnobrich M. Contemporary Management of Sites with Petroleum LNAPL Presence // Groundwater Monitoring & Remediation. — 2015. — Vol. 35, no. 1. — P. 23–29. — doi: 10.1111/gwmr.12099.
  47. Titov K., Kemna A., Tarasov A., et al. Induced Polarization of Unsaturated Sands Determined through Time Domain Measurements // Vadose Zone Journal. — 2004. — Vol. 3, no. 4. — P. 1160–1168. — doi: 10.2136/vzj2004.1160.
  48. Wang Y.-y., Guo X.-j., Shao S., et al. Abnormal features analysis and status evaluation for oil contaminated site in capillary zone based on ground penetrating radar // Progress in Geophysics. — 2018. — Vol. 33, no. 5. — P. 2172–2180. — doi: 10.6038/pg2018BB0365.
  49. Yang M., Yang Y. S., Du X., et al. Fate and Transport of Petroleum Hydrocarbons in Vadose Zone: Compound-specific Natural Attenuation // Water, Air, & Soil Pollution. — 2013. — Vol. 224, no.3— P. 1439. — doi: 10.1007/s11270013-1439-y.
  50. Zeman N. R., Irianni Renno M., Olson M. R., et al. Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure // Biodegradation. — 2014. — Vol. 25, no. 4. — P. 569–585. — doi: 10.1007/s10532-014-9682-5.

© Мингалева Т.A., Шакуро С.V., Егоров А.S., 2023

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>