DOPPLER AND NON-DOPPLER SHIFTS IN DISPERSION RELATIONS FOR ROSSBY WAVES AND GALILEAN INVARIANCE

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to draw the reader's attention to a paradoxical fact – the existence of two different dispersion relations for linear Rossby waves: with Doppler and nonDoppler shifts. This paper highlights aspects arising from studying the interaction of Rossby waves and large-scale stationary flows within the framework of the linear wave approximation. The methods used in the work consist of the analysis of dispersion relations obtained by different authors. They are subordinated to the main task of the study – to establish where and when a non-Doppler shift appears in the system of two-dimensional linear equations of Rossby waves. Assuming that the flow is homogeneous, additional terms appear in the dispersion relation of Rossby waves for the solution in a plane wave, which can have both Doppler and non-Doppler effects. The paper shows that the non-Doppler character of the dispersion relation of Rossby waves on the current appears due to an additional assumption about the slope of the free surface, or the slope of the interface in a two-layer model (pycnocline for the ocean, and tropopause for the atmosphere). It is established that to derive some of these relations, excessive requirements for boundary conditions or separate terms in the equation for potential vorticity were previously applied. It is shown that to deduce the dispersion relation of Rossby waves with a non-Doppler shift, it is not necessary to throw out the topographic term in the boundary condition or abandon the hydrostatic approximation.

About the authors

V. Gnevyshev

P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences; St Petersburg University

ORCID iD: 0000-0001-6654-5570
Scopus Author ID: 6507346231
ResearcherId: AAZ-6352-2021

T. Belonenko

Saint Petersburg State University

Email: btvlisab@yandex.ru
Oceanography

References

  1. Belonenko T. V., Bashmachnikov I. L. and Kubryakov A. A. Horizontal advection of temperature and salinity by Rossby waves in the North Pacific // International Journal of Remote Sensing. — 2018. — Vol. 39, no. 8. — P. 2177–2188. — https://doi.org/10.1080/01431161.2017.1420932. EDN: XYCJQD
  2. Belonenko T. V. and Frolova A. V. Antarctic Circumpolar Current as a waveguide for Rossby waves and mesoscale eddies // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2019. — Vol. 16, no. 1. — P. 181–190. — https://doi.org/10.21046/2070-7401-2019-16-1-181-190. — (In Russian). EDN: ZABIBF
  3. Belonenko T. V., Kubrjakov A. A. and Stanichny S. V. Spectral characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry // Izvestiya, Atmospheric and Oceanic Physics. — 2016. — Vol. 52, no. 9. — P. 920–928. — https://doi.org/10.1134/S0001433816090073. EDN: WIQXDJ
  4. Belonenko T. V. and Kubryakov A. A. Temporal variability of the phase velocity of Rossby waves in the North Pacific // Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. — 2014. — Vol. 11, no. 3. — P. 9–18. — (In Russian). EDN: THXXXJ
  5. Bühler O. Waves and Mean Flows. — Cambridge University Press, 2014. — 363 p. — https://doi.org/10.1017/CBO9781107478701.
  6. Bulatov V. V. and Vladimirov Yu. V. Waves in Stratified Media. — Moscow : Nauka, 2015. — 734 p. — EDN: TZOPZB ; (in Russian).
  7. Bulatov V. V. and Vladimirov Yu. V. Theory of Wave Motions in Inhomogeneous Media. — Kirov : International Center for Scientific Research Projects, 2017. — 580 p. — EDN: XWYCTT ; (in Russian).
  8. Charney J. G. The Dynamics of Long Waves in a Baroclinic Westerly Current // Journal of Meteorology. — 1947. — Vol. 4, no. 5. — P. 136–162. — https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
  9. Charney J. G. On the scale of atmospheric motion // Geofysiske Publikasjoner. — 1948. — Vol. 17, no. 2.
  10. Churilov S. and Stepanyants Y. Reflectionless wave propagation on shallow water with variable bathymetry and current. Part 2 // Journal of Fluid Mechanics. — 2022. — Vol. 939. — https://doi.org/10.1017/jfm.2022.208. EDN: TSZMFN
  11. Corby G. A. Laplace’s tidal equations – an application of solutions for negative depth // Quarterly Journal of the Royal Meteorological Society. — 1967. — Vol. 93, no. 397. — P. 368–370. — https://doi.org/10.1002/qj.49709339709.
  12. Dewar W. K. On "Too Fast" Baroclinic Planetary Waves in the General Circulation // Journal of Physical Oceanography. — 1998. — Vol. 28, no. 9. — P. 1739–1758. — https://doi.org/10.1175/1520-0485(1998)028<1739:OTFBPW>2.0.CO;2.
  13. Dewar W. K. and Morris M. Y. On the Propagation of Baroclinic Waves in the General Circulation // Journal of Physical Oceanography. — 2000. — Vol. 30, no. 11. — P. 2637–2649. — https://doi.org/10.1175/1520-0485(2000)030<2637:OTPOBW>2.0.CO;2.
  14. Drivdal M., Weber J. E. H. and Debernard J. B. Dispersion Relation for Continental Shelf Waves When the Shallow Shelf Part Has an Arbitrary Width: Application to the Shelf West of Norway // Journal of Physical Oceanography. — 2016. — Vol. 46, no. 2. — P. 537–549. — https://doi.org/10.1175/jpo-d-15-0023.1.
  15. Efimov V. V., Kulikov E. A., Rabinovich A. B., et al. Waves in Coastal Regions of the Ocean. — Leningrad : Gidrometeoizdat, 1985. — 250 p. — (In Russian).
  16. Erokhin N. S. and Sagdeev R. Z. On the Theory of Anomalous Focus of Internal Waves in Horizontally-Inhomogeneous Fluid. Part 2. Precise Solution of Two-Dimensional Problem with Regard for Viscosity and Non-Stationarity // Morskoy Gidrofizicheskiy Zhurnal. — 1985a. — No. 4. — P. 3–10. — (In Russian).
  17. Erokhin N. S. and Sagdeev R. Z. To the Theory of Anomalous Focusing of Internal Waves in a Two-Dimensional Non- Uniform Fluid. Part I: A Stationary Problem // Morskoy Gidrofizicheskiy Zhurnal. — 1985b. — No. 2. — P. 15–27. — (In Russian).
  18. Fabrikant A. L. and Stepanyants Y. A. Propagation of waves in shear flows. — World Scientific, 1998. — 287 p. doi: 10.1142/2557; EDN: HLJQYQ
  19. Fedorov A. M. and Belonenko T. V. Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database // Russian Journal of Earth Sciences. — 2020. — Vol. 20, no. 2. — https://doi.org/10.2205/2020ES000694. EDN: TEHTJD
  20. Gerkema T., Maas L. R. M. and Haren H. van. A Note on the Role of Mean Flows in Doppler-Shifted Frequencies // Journal of Physical Oceanography. — 2013. — Vol. 43, no. 2. — P. 432–441. — https://doi.org/10.1175/jpo-d-12-090.1.
  21. Gill A. Atmosphere-Ocean Dynamics. — 1st. — Academic Press, 1982. — 680 p.
  22. Gnevyshev V. G. and Belonenko T. V. Doppler effect and Rossby waves in the ocean: A brief history and new approaches // Fundamental and Applied Hydrophysics. — 2023. — Vol. 16, no. 3. — P. 72–92. — https://doi.org/10.59887/2073-6673.2023.16(3)-6. — (In Russian). EDN: IBRNVA
  23. Gnevyshev V. G., Frolova A. V., Koldunov A. V., et al. Topographic Effect for Rossby Waves on a Zonal Shear Flow // Fundamentalnaya i Prikladnaya Gidrofizika. — 2021a. — Vol. 14, no. 1. — P. 4–14. — https://doi.org/10.7868/s2073667321010019. — (In Russian). EDN: IXMRHM
  24. Gnevyshev V. G., Frolova A. V., Kubryakov A. A., et al. Interaction between Rossby Waves and a Jet Flow: Basic Equations and Verification for the Antarctic Circumpolar Current // Izvestiya, Atmospheric and Oceanic Physics. — 2019. — Vol. 55, no. 5. — P. 412–422. — https://doi.org/10.1134/S0001433819050074. EDN: CACUNS
  25. Gnevyshev V. G., Malysheva A. A., Belonenko T. V., et al. On Agulhas eddies and Rossby waves travelling by forcing effects // Russian Journal of Earth Sciences. — 2021b. — Vol. 21, no. 5. — https://doi.org/10.2205/2021ES000773. EDN: XOHKDL
  26. Gnevyshev V. G., Travkin V. S. and Belonenko T. V. Group Velocity and Dispertion of Buchwald and Adams Shelf Waves. A New Analytical Approach // Fundamental and Applied Hydrophysics. — 2023a. — Vol. 16, no. 2. — P. 8–20. —https://doi.org/10.59887/2073-6673.2023.16(2)-1. — (In Russian). EDN: TEKTXN
  27. Gnevyshev V. G., Travkin V. S. and Belonenko T. V. Topographic Factor and Limit Transitions in the Equations for Subinertial Waves // Fundamental and Applied Hydrophysics. — 2023b. — Vol. 16, no. 1. — P. 8–23. — https://doi.org/10.59887/fpg/92rg-6t7h-m4a2. EDN: NAZMTO
  28. Gnevyshev V. V., Frolova A. V. and Belonenko T. V. Topographic Effect for Rossby Waves on Non-Zonal Shear Flow // Water Resources. — 2022. — Vol. 49, no. 2. — P. 240–248. — https://doi.org/10.1134/s0097807822020063. EDN: FZLHHV
  29. Gulliver L. T. and Radko T. On the Propagation and Translational Adjustment of Isolated Vortices in Large-Scale Shear Flows // Journal of Physical Oceanography. — 2022. — Vol. 52, no. 8. — P. 1655–1675. — https://doi.org/10.1175/jpo-d-21-0257.1. EDN: XTMMND
  30. Haurwitz B. The Motion of Atmospheric Disturbances // Journal of Marine Research. — 1940. — Vol. 3. — P. 35–50.
  31. Held I. M. Stationary and quasi-stationary eddies in the extratropical troposphere: Theory // Large-Scale Dynamical Processes in the Atmosphere / ed. by B. J. Hoskins and R. P. Pearce. — Academic Press, 1983. — P. 127–168.
  32. Kharif C., Pelinovsky E. and Slynyaev A. Rogue Waves in the Ocean. — Berlin : Springer, 2009. — 260 p.
  33. Killworth P. D. and Blundell J. R. The Dispersion Relation for Planetary Waves in the Presence of Mean Flow and Topography. Part II: Two-Dimensional Examples and Global Results // Journal of Physical Oceanography. — 2005. — Vol. 35, no. 11. — P. 2110–2133. — https://doi.org/10.1175/JPO2817.1.
  34. Killworth P. D. and Blundell J. R. Planetary Wave Response to Surface Forcing and Instability in the Presence of Mean Flow and Topography // Journal of Physical Oceanography. — 2007. — Vol. 37, no. 5. — P. 1297–1320. — https://doi.org/10.1175/jpo3055.1.
  35. Killworth P. D., Chelton D. B. and Szoeke R. A. de. The speed of observed and theoretical long extratropical planetary waves // Journal of Physical Oceanography. — 1997. — Vol. 27. — P. 1946–1966. — https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.
  36. Korotaev G. K. Theoretical modeling of synoptic ocean variability. — Kyiv : Naukova dumka, 1988. — 160 p. — (In Russian).
  37. Kravtsov S. and Reznik G. Monopoles in a uniform zonal flow on a quasi-geostrophic-plane: effects of the Galilean non-invariance of the rotating shallow-water equations // Journal of Fluid Mechanics. — 2020. — Vol. 909. — https://doi.org/10.1017/jfm.2020.906. EDN: SPRYXE
  38. Kubokawa A. and Nagakura M. Linear planetary wave dynamics in a 2.5-layer ventilated thermocline model // Journal of Marine Research. — 2002. — Vol. 60, no. 3. — P. 367–404. doi: 10.1357/002224002762231142
  39. Kundu P., Cohen I. M. and Dowling D. R. Fluid Mechanics. — Elsevier Science & Technology Books, 2015. — 928 p.
  40. LaCasce J. H. The Prevalence of Oceanic Surface Modes // Geophysical Research Letters. — 2017. — Vol. 44, no. 21. — P. 11097–11105. — https://doi.org/10.1002/2017gl075430.
  41. LeBlond P. H. and Mysak L. A. Waves in the Ocean. Vol. 20. — Elsevier Science & Technology Books, 1981. — 602 p.
  42. Lindzen R. S. Rossby waves with negative equivalent depths – comments on a note by G. A. Corby // Quarterly Journal of the Royal Meteorological Society. — 1968. — Vol. 94, no. 401. — P. 402–407. — https://doi.org/10.1002/qj. 49709440116.
  43. Liu Z. Y. Forced Planetary Wave Response in a Thermocline Gyre // Journal of Physical Oceanography. — 1999a. — Vol. 29, no. 5. — P. 1036–1055. — https://doi.org/10.1175/1520-0485(1999)029<1036:FPWRIA>2.0.CO;2.
  44. Liu Z. Y. Planetary wave modes in the thermocline: Non-Doppler-shift mode, advective mode and Green mode // Quarterly Journal of the Royal Meteorological Society. — 1999b. — Vol. 125, no. 556. — P. 1315–1339. — https://doi.org/10.1002/qj.1999.49712555611.
  45. Lounguet-Higgins M. S. Planetary waves on a rotating sphere II // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. — 1965. — Vol. 284, no. 1396. — P. 40–68. — https://doi.org/10.1098/rspa.1965.0051.
  46. Maharaj A. M., Cipollini P., Holbrook N. J., et al. An evaluation of the classical and extended Rossby wave theories in explaining spectral estimates of the first few baroclinic modes in the South Pacific Ocean // Ocean Dynamics. — 2007. — Vol. 57, no. 3. — P. 173–187. — https://doi.org/10.1007/s10236-006-0099-5. EDN: KWEDPA
  47. Morel Y. G. The Influence of an Upper Thermocline Current on Intrathermocline Eddies // Journal of Physical Oceanog- raphy. — 1995. — Vol. 25, no. 12. — P. 3247–3252. — https://doi.org/10.1175/1520-0485(1995)025<3247:TIOAUT>2.0.CO;2.
  48. Morel Y. G. and McWilliams J. Evolution of Isolated Interior Vortices in the Ocean // Journal of Physical Oceanography. — 1997. — Vol. 27, no. 5. — P. 727–748. — https://doi.org/10.1175/1520-0485(1997)027<0727:EOIIVI>2.0.CO;2.
  49. Nezlin M. V. Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type) // Soviet Physics Uspekhi. — 1986. — Vol. 29, no. 9. — P. 807–842. — https://doi.org/10.1070/ pu1986v029n09abeh003490. doi: 10.1070/PU1986v029n09ABEH003490; EDN: YWAKKK
  50. Nycander J. Steady vortices in plasmas and geophysical flows // Chaos: An Interdisciplinary Journal of Nonlinear Science. — 1994. — Vol. 4, no. 2. — P. 253–267. — https://doi.org/10.1063/1.166006. EDN: XPMXDI
  51. Pedlosky J. Geophysical Fluid Dynamics. — New York : Springer New York, 1987. — 710 p. — https://doi.org/10.1007/ 978-1-4612-4650-3.
  52. Rabinovich A. B. Long Gravity Waves in the Ocean: Trapping, Resonance, Radiation. — St. Petersburg : Gidrometeoizdat, 1993. — 325 p. — (In Russian).
  53. Rossby C. G., Willett H. C., Holmboe J., et al. Relation Between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacements of the Semi-permanent Centers of Action // Journal of Marine Research. — 1939. — Vol. 2, no. 1. — P. 38–55. — URL: https://elischolar.library.yale.edu/journal_of_marine_research/544/. doi: 10.1357/002224039806649023
  54. Samelson R. M. An effective-β vector for linear planetary waves on a weak mean flow // Ocean Modelling. — 2010. — Vol. 32, no. 3/4. — P. 170–174. — https://doi.org/10.1016/j.ocemod.2010.01.006.
  55. Schlax M. G. and Chelton D. B. The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean // Geophysical Research Letters. — 2008. — Vol. 35, no. 24. — P. L24602. — https://doi.org/10.1029/2008GL035998. EDN: YCCSHB
  56. Stepanyants Yu. A. and Fabrikant A. L. Propagation of waves in hydrodynamic shear flows // Soviet Physics Uspekhi. — 1989. — Vol. 32, no. 9. — P. 783–805. — https://doi.org/10.1070/pu1989v032n09abeh002757.
  57. Sutyrin G. G. How Oceanic Vortices can be Super Long-Lived // Physical Oceanography. — 2020. — Vol. 27, no. 6. — P. 677–691. — https://doi.org/10.22449/1573-160X-2020-6-677-691. EDN: YPYQBW
  58. Tailleux R. and McWilliams J. C. The Effect of Bottom Pressure Decoupling on the Speed of Extratropical, Baroclinic Rossby Waves // Journal of Physical Oceanography. — 2001. — Vol. 31. — P. 1461–1476. — https://doi.org/10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.
  59. Tulloch R., Marshall J. and Smith K. S. Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence // Journal of Geophysical Research: Oceans. — 2009. — Vol. 114, no. C2. — https://doi.org/10.1029/2008jc005055.
  60. Vallis G. K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. — Cambridge University Press, 2017. — 946 p. — https://doi.org/10.1017/9781107588417. EDN: VGJGHA
  61. Verdiére A. Colin de and Tailleux R. The Interaction of a Baroclinic Mean Flow with Long Rossby Waves // Journal of Physical Oceanography. — 2005. — Vol. 35, no. 5. — P. 865–879. — https://doi.org/10.1175/JPO2712.1.
  62. White A. A. Modified quasi-geostrophic equations using geometric height as vertical coordinate // Quarterly Journal of the Royal Meteorological Society. — 1977. — Vol. 103, no. 437. — P. 383–396. — https://doi.org/10.1002/qj.49710343702.
  63. Wunsch C. Modern Observational Physical Oceanography : Understanding the Global Ocean. — Princeton University Press, 2015. — 512 p.
  64. Yasuda I., Ito S.-I., Shimizu Y., et al. Cold-Core Anticyclonic Eddies South of the Bussol’ Strait in the Northwestern Subarctic Pacific // Journal of Physical Oceanography. — 2000. — Vol. 30, no. 6. — P. 1137–1157. — https://doi.org/10.1175/1520-0485(2000)030<1137:CCAESO>2.0.CO;2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Gnevyshev V., Belonenko T.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.