DETERMINATION OF 3D GRAVITY SOURCE AND ITS DEPTH BENEATH CAMEROON VOLCANIC LINE (CVL) USING DEXP TRANSFORMATION

Cover Page

Cite item

Full Text

Abstract

The Cameroon Volcanic Line (CVL), which is around 1600 km long, the Adamawa Plateau, the northern sedimentary basins, the Central African Shear Zone, and the northern boundary between the Pan-African Mobile Belt and Congo Craton are the primary geological features of Cameroon. A good number of authors have attempted to comprehend the geology and gravity field along the CVL by using gravitational data from the EGM2008 model to analyze the gravity effects in areas around Cameroon and the CVL with a focus on its structures and subsurface characteristics. Despite the fact that many authors have written on the subject matter, more emphasis has to be placed on the determination of the gravity source and depth beneath the CVL. Experimental gravity field model XGM2019e_2159 and DTU21 data were used in this research to estimate the depth of the gravity source. Both DEXP (Depth from Extreme Points) and spectral analysis were carried out to complement the results and accuracy of the techniques. The main focus of this research is to investigate the gravity source depth of CVL using DEXP as the main approach to illustrate its application in solving geophysical and geologic problems and reveal details of volcanic structures beneath the CVL. In this work, we describe the steps taken to calculate the anomalous gravity field and regional and residual gravitational effects. We further performed application of the DEXP transformation of 3D gravity field distribution to produce a 3D model for the depth of gravity sources.

About the authors

Ndinde Eya Ekolle

Novosibirsk State University

Email: ekolleeya@gmail.com
ORCID iD: 0000-0002-0651-6206
Geology and Geophysics, academician Russian Academy of Arts 2021-2025, graduate student of geological and mineralogical sciences

A. Vasilevskiy

Novosibirsk State University; Institute of Petroleum Geology and Geophysics

Email: a.vasilevskii@g.nsu.ru
ORCID iD: 0000-0002-8732-6198
academician Russian Academy of Sciences, doctor of geological and mineralogical sciences

E. Esin

Novosibirsk State University; Institute of Petroleum Geology and Geophysics

Email: e.esin@g.nsu.ru
docent Russian Academy of Sciences 2022-2025, doctoral candidate of geological and mineralogical sciences

References

  1. Abate Essi, J. M., J. Marcel, J. Q. Yene Atangana, et al. (2017), Interpretation of gravity data derived from the Earth Gravitational Model EGM2008 in the Center-North Cameroon: structural and mining implications, Arabian Journal of Geosciences, 10(6), https://doi.org/10.1007/s12517-017-2919-y.
  2. Abd-Elmotaal, H. A., K. Seitz, N. Kühtreiber, and B. Heck (2018), AFRGDB_V2.0: The Gravity Database for the Geoid Determination in Africa, in International Symposium on Advancing Geodesy in a Changing World, pp. 61–70, Springer International Publishing, Kobe, https://doi.org/10.1007/1345_2018_29.
  3. Abdelrahman, E. M., S. Riad, E. Refai, and Y. Amin (1985), On the least-squares residual anomaly determination, Geophysics, 50(3), 473–480, https://doi.org/10.1190/1.1441925.
  4. Aka, F. T., K. Nagao, M. Kusakabe, et al. (2004), Symmetrical Helium isotope distribution on the Cameroon Volcanic Line, West Africa, Chemical Geology, 203(3–4), 205–223, https://doi.org/10.1016/j.chemgeo.2003.10.003.
  5. Apeh, O. I., and R. Tenzer (2022), Development of tailored gravity model based on global gravitational and topographic models and terrestrial gravity data for geophysical exploration of southern benue trough in southeast Nigeria, Journal of Applied Geophysics, 198, 104,561, https://doi.org/10.1016/j.jappgeo.2022.104561.
  6. Barthelmes, F. (2013), Definition of functionals of the geopotential and their calculation from spherical harmonic models, Scientific Technical Report, https://doi.org/10.2312/GFZ.B103-0902-26.
  7. Barzaghi, R., D. J. Carrion, L. H. Kamguia, et al. (2021), Estimating gravity field and quasi-geoid in Cameroon (CGM20), Journal of African Earth Sciences, 184, https://doi.org/10.1016/j.jafrearsci.2021.104377.
  8. Begg, G. C., W. L. Griffin, L. M. Natapov, et al. (2009), The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution, Geosphere, 5(1), 23–50, https://doi.org/10.1130/GES00179.1.
  9. Bloch, Y. I. (2009), Interpretation of gravitational and magnetic anomalies, 232 pp., Yu. I. Bloch (in Russian).
  10. Burke, K. (2001), Origin of the Cameroon Line of Volcano-Capped Swells, The Journal of Geology, 109(3), 349–362, https://doi.org/10.1086/319977.
  11. Castaing, C., J. L. Feybesse, D. Thiéblemont, et al. (1994), Palaeogeographical reconstructions of the PanAfrican/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks?, Precambrian Research, 69(1–4), 327–344, https://doi.org/10.1016/0301-9268(94)90095-7.
  12. Cheunteu Fantah, C. A., C. A. Mezoue, M. P. Mouzong, et al. (2022), Mapping of major tectonic lineaments across Cameroon using potential field data, Earth, Planets and Space, 74(1), https://doi.org/10.1186/s40623-022-01612-7.
  13. Déruelle, B., I. Ngounouno, and D. Demaiffe (2007), The ’Cameroon Hot Line’ (CHL): A unique example of active alkaline intraplate structure in both oceanic and continental lithospheres, Comptes Rendus. Géoscience, 339(9), 589–600, https://doi.org/10.1016/j.crte.2007.07.007.
  14. Draper, N., and H. Smith (1998), Applied Regression Analysis, 709 pp., Wiley, https://doi.org/10.1002/9781118625590.
  15. Drewes, H., F. Kuglitsch, J. A. am, et al. (2016), The Geodesist’s Handbook 2016, Journal of Geodesy, 90(10), 907–1205, https://doi.org/10.1007/s00190-016-0948-z.
  16. Dumont, J. F. (1986), Identification by remote sensing of the Sanaga accident (Cameroon). Its position in the context of the great accidents of Central Africa and the northern limit of the Congolese craton, Geodynamics, 1, 13–19 (in French).
  17. Elsheikh, A., S. Gao, and K. Liu (2014), Formation of the Cameroon Volcanic Line by lithospheric basal erosion: Insight from mantle seismic anisotropy, Journal of African Earth Sciences, 100, 96–108, https://doi.org/10.1016/j.jafrearsci.2014.06.011.
  18. Esin, E. I., A. N. Vasilevskiy, and N. A. Bushenkova (2024), Spatial Correlations between the Terrain Features, Gravitational Field and Seismic Velocity Anomalies in the Central Kamchatka Region, Russian Geology and Geophysics, 65(2), 285–298, https://doi.org/10.2113/rgg20234579.
  19. Evariste, N. H., L. Genyou, T. C. Tabod, et al. (2014), Crustal structure beneath Cameroon from EGM2008, Geodesy and Geodynamics, 5(1), 1–10, https://doi.org/10.3724/sp.j.1246.2014.01001.
  20. Fairhead, J. D., and C. S. Okereke (1987), A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation, Tectonophysics, 143(1–3), 141–159, https://doi.org/10.1016/0040-1951(87)90084-9.
  21. Fedi, M. (2007), DEXP: A fast method to determine the depth and the structural index of potential fields sources, Geophysics, 72(1), I1–I11, https://doi.org/10.1190/1.2399452.
  22. Fedi, M., and M. Pilkington (2011), Understanding imaging methods for potential field data, in SEG Technical Program Expanded Abstracts 2011, pp. 786–790, Society of Exploration Geophysicists, https://doi.org/10.1190/1.3628194.
  23. Fedi, M. G., and G. Florio (2013), Determination of the maximum-depth to potential field sources by a maximum structural index method, Journal of Applied Geophysics, 88, 154–160, https://doi.org/10.1016/j.jappgeo.2012.10.009.
  24. Förste, C., S. L. Bruinsma, O. Abrikosov, et al. (2014), EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, https://doi.org/10.5880/ICGEM.2015.1.
  25. Gallacher, R. J., and I. D. Bastow (2012), The development of magmatism along the Cameroon Volcanic Line: Evidence from teleseismic receiver functions, Tectonics, 31(3), https://doi.org/10.1029/2011tc003028.
  26. Gautier, K. P., L. Yap, Z. A. Alain, et al. (2021), Evaluation of global gravity field models using shipborne free-air gravity anomalies over the Gulf of Guinea, Central Africa, Survey Review, 54(384), 243–253, https://doi.org/10.1080/00396265.2021.1921519.
  27. Gautier Kamto, P., C. Mezoue Adiang, S. Nguiya, J. Kamguia, and L. Yap (2020), Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa, Earth and Planetary Physics, 4(6), 1–12, https://doi.org/10.26464/epp2020065.
  28. Gerard, A., and N. Debeglia (1975), Automatic Three-Dimensional Modeling for Interpretation of Gravity or Magnetic Anomalies, Geophysics, 40(6), 1014–1034, https://doi.org/10.1190/1.1440578.
  29. Ghomsi, F. E. K., N. R. Filho, R. Baldez, et al. (2021), Identification of Cameroon’s geological structures through a gravity separation and using seismic crustal models, Journal of African Earth Sciences, 173, 104,027, https://doi.org/10.1016/j.jafrearsci.2020.104027.
  30. Gilardoni, M., M. Reguzzoni, and D. Sampietro (2016), GECO: a global gravity model by locally combining GOCE data and EGM2008, Studia Geophysica et Geodaetica, 60(2), 228–247, https://doi.org/10.1007/s11200-015-1114-4.
  31. Goussi Ngalamo, J. F., M. Sobh, D. Bisso, et al. (2018), Lithospheric structure beneath the Central Africa Orogenic Belt in Cameroon from the analysis of satellite gravity and passive seismic data, Tectonophysics, 745, 326–337, https://doi.org/10.1016/j.tecto.2018.08.015.
  32. Gruber, T., P. H. Zingerle, R. Pail, and X. Oikonomidou (2019), High resolution gravity field models as global reference surface for heights, SIRGAS.
  33. Kamgang, P., E. Njonfang, A. Nono, et al. (2010), Petrogenesis of a silicic magma system: Geochemical evidence from Bamenda Mountains, NW Cameroon, Cameroon Volcanic Line, Journal of African Earth Sciences, 58(2), 285–304, https://doi.org/10.1016/j.jafrearsci.2010.03.008.
  34. Kamguia, J., C. T. Tabod, R. Nouayou, et al. (2007), The Local Geoid Model of Cameroon: CGM05, Nordic Journal of Surveying and Real Estate Research, 4(2).
  35. Kamto, P. G., W. Lemotio, A.-P. K. Tokam, and L. Yap (2021), Combination of Terrestrial and Satellite Gravity Data for the Characterization of the Southwestern Coastal Region of Cameroon: Appraisal for Hydrocarbon Exploration, International Journal of Geophysics, 2021, 1–14, https://doi.org/10.1155/2021/5554528.
  36. Kenfack, J. V., J. M. Tadjou, J. Kamguia, et al. (2011), Gravity Interpretation of the Cameroon Mountain (West Central Africa) Based on the New and Existing Data, International Journal of Geosciences, 02(04), 513–522, https://doi.org/10.4236/ijg.2011.24054.
  37. Kenfack, J. V., J. Kamguia, K. D. Armand, et al. (2017), Estimation of the Depth of Major Subsurface Discontinuities Beneath the Mount Cameroon Region, Central Africa, Based on New and Existing Gravity Data Analysis, Earth Science Research, 6(1), 142, https://doi.org/10.5539/esr.v6n1p142.
  38. Kokoshkin, A. V., V. A. Korotkov, K. V. Korotkov, et al. (2015), Universal reference spectrum use for noise-to-signal ratio estimation in the Wiener filter, Zhurnal Radioelektroniki, (7) (in Russian).
  39. Lawrence, S., S. Munday, and R. Bray (2002), Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni), The Leading Edge, 21(11), 1112–1117, https://doi.org/10.1190/1.1523752.
  40. Lee, J., and J. H. Kwon (2020), Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(2), 153–163, https://doi.org/10.7848/ksgpc.2020.38.2.153.
  41. Marcel, J., N. P. Njandjock, C. T. Tabob, and E. Manguelle-Dicoum (2010), Moho Depth Estimates for the Cameroon Volcanic Line from Gravity Data, International Journal of Economic and Environmental Geology, 1, 17–20.
  42. Marcel, J., J. M. Abate Essi, P. N. Nouck, et al. (2016), Structure of the Crust Beneath the South Western Cameroon, from Gravity Data Analysis, International Journal of Geosciences, 07(08), 991–1008, https://doi.org/10.4236/ijg.2016.78075.
  43. Marcel, J., J. M. Abate Essi, P. N. Nouck, et al. (2018), Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa), Earth, Planets and Space, 70(1), https://doi.org/10.1186/s40623-018-0812-x.
  44. Matheron, G. (1963), Principles of geostatistics, Economic Geology, 58(8), 1246–1266, https://doi.org/10.2113/gsecongeo.58.8.1246.
  45. Moundi, A., P. Wandji, J.-M. Bardintzeff, et al. (2007), Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la ligne volcanique du Cameroun, Comptes Rendus. Géoscience, 339(6), 396–406, https://doi.org/10.1016/j.crte.2007.04.001 (in French).
  46. Murthy, I. V. R., and S. K. G. Krishnamacharyulu (1990), Polyfit: A Fortran 77 Program to Fit a Polynomial of Any Order to Potential Field Anomalies, Journal of Association of Exploration Geophysicists, 11, 99–105.
  47. Ndikum, E. N., C. T. Tabod, B. Z. Essimbi, et al. (2014), Gravity Model for an Anomalous Body Located in the NW Portion of the Douala Sedimentary Sub-Basin, Cameroon (Central Africa), Open Journal of Geology, 04(10), 524–541, https://doi.org/10.4236/ojg.2014.410039.
  48. Nguiya, S., M. M. Pemi, A. K. Tokam, et al. (2019), Crustal structure beneath the Mount Cameroon region derived from recent gravity measurements, Comptes Rendus. Géoscience, 351(6), 430–440, https://doi.org/10.1016/j.crte.2019.05.001.
  49. Njandjock, N. P., E. Manguelle-Dicoum, M. T. Ndougsa, and C. T. Tabod (2006), Spectral analysis and gravity modelling in the Yagoua, Cameroon, sedimentary basin, Geofísica Internacional, 45(3), 209–215, https://doi.org/10.22201/igeof.00167169p.2006.45.3.206.
  50. Njeudjang, K., J. M. Abate Essi, J. D. Kana, et al. (2020), Gravity investigation of the Cameroon Volcanic Line in Adamawa region: Geothermal features and structural control, Journal of African Earth Sciences, 165, 103,809, https://doi.org/10.1016/j.jafrearsci.2020.103809.
  51. Njome, M. S., and M. J. de Wit (2014), The Cameroon Line: Analysis of an intraplate magmatic province transecting both oceanic and continental lithospheres: Constraints, controversies and models, Earth-Science Reviews, 139, 168–194, https://doi.org/10.1016/j.earscirev.2014.09.003.
  52. Nnange, J., V. Ngako, J. Fairhead, and C. Ebinger (2000), Depths to density discontinuities beneath the Adamawa Plateau region, Central Africa, from spectral analyses of new and existing gravity data, Journal of African Earth Sciences, 30(4), 887–901, https://doi.org/10.1016/s0899-5362(00)00058-0.
  53. Noel, E., M. Marcelin, and A. Bekoa (2014), Crustal Structure and Seismogenic Zone of Cameroon: Integrated Seismic, Geological and Geophysical Data, Open Journal of Earthquake Research, 03(04), 152–161, https://doi.org/10.4236/ojer.2014.34015.
  54. Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research: Solid Earth, 117(B4), https://doi.org/10.1029/2011jb008916.
  55. Pawlowski, R. S., and R. O. Hansen (1990), Gravity anomaly separation by Wiener filtering, Geophysics, 55(5), 539–548, https://doi.org/10.1190/1.1442865.
  56. Sampietro, D. (2015), Geological units and Moho depth determination in the Western Balkans exploiting GOCE data, Geophysical Journal International, 202(2), 1054–1063, https://doi.org/10.1093/gji/ggv212.
  57. Spector, A., and F. S. Grant (1970), Statistical Models for Interpreting Aeromagnetic Data, Geophysics, 35(2), 293–302, https://doi.org/10.1190/1.1440092.
  58. Suh, C. E., S. N. Ayonghe, R. S. J. Sparks, et al. (2003), The 1999 and 2000 eruptions of Mount Cameroon: eruption behaviour and petrochemistry of lava, Bulletin of Volcanology, 65(4), 267–281, https://doi.org/10.1007/s00445-002-0257-7.
  59. Tokam, A.-P. K., C. T. Tabod, A. A. Nyblade, et al. (2010), Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions: Joint inversion in Cameroon, Geophysical Journal International, 183(2), 1061–1076, https://doi.org/10.1111/j.1365-246x.2010.04776.x.
  60. Toteu, S. F., J. Penaye, and Y. P. Djomani (2004), Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon, Canadian Journal of Earth Sciences, 41(1), 73–85, https://doi.org/10.1139/e03-079.
  61. Yokoyama, T., F. T. Aka, M. Kusakabe, and E. Nakamura (2007), Plume-lithosphere interaction beneath Mt. Cameroon volcano, West Africa: Constraints from 238U-230Th-226Ra and Sr-Nd-Pb isotope systematics, Geochimica et Cosmochimica Acta, 71(7), 1835–1854, https://doi.org/10.1016/j.gca.2007.01.010.
  62. Zhou, R., and X. Wu (2015), An iterative Wiener filtering method based on the gravity gradient invariants, Geodesy and Geodynamics, 6(4), 286–291, https://doi.org/10.1016/j.geog.2015.06.002.
  63. Zingerle, P., R. Pail, T. Gruber, and X. Oikonomidou (2019), The experimental gravity field model XGM2019e, GFZ Data Services, https://doi.org/10.5880/ICGEM.2019.007.
  64. Zingerle, P., R. Pail, T. Gruber, and X. Oikonomidou (2020), The combined global gravity field model XGM2019e, Journal of Geodesy, 94(7), https://doi.org/10.1007/s00190-020-01398-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Ekolle N.E., Vasilevskiy A., Esin E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.