OPTIMAL INTERPOLATION METHOD FOR GENERATING A DIGITAL BATHYMETRIC MODEL FOR SHALLOW WATERS: A CASE STUDY OVER MAURITIUS COAST
- Authors: Satpute S.1, Roy S.2, Gatage O.S.3, Kolase V.B.4, Singh S.K.1, Dandabathula G.5
-
Affiliations:
- Suresh Gyan Vihar University
- Regional Remote Sensing Centre - West
- Bharatidasan University
- Bharathidasan University
- Indian Space Research Organisation
- Issue: Vol 24, No 6 (2024)
- Pages: ES6003
- Section: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352520
- DOI: https://doi.org/10.2205/2024es000937
- EDN: https://elibrary.ru/pghffw
- ID: 352520
Cite item
Full Text
Abstract
About the authors
Shwetambari Satpute
Suresh Gyan Vihar University
ORCID iD: 0009-0003-2301-1765
Subham Roy
Regional Remote Sensing Centre - West
ORCID iD: 0009-0007-6704-2781
Omkar Shashikant Gatage
Bharatidasan University
ORCID iD: 0009-0007-0005-4833
Vaibhav Balaso Kolase
Bharathidasan University
ORCID iD: 0009-0004-9379-2584
Suraj Kumar Singh
Suresh Gyan Vihar University
ORCID iD: 0000-0002-9420-2804
Giribabu Dandabathula
Indian Space Research Organisation
Email: dgb.isro@gmail.com
ORCID iD: 0000-0003-3245-8094
Regional Remote Sensing Centre - West
References
Amoroso, P. P., U. Falchi, F. G. Figliomeni, and A. Vallario (2023), The Influence of Interpolation Methods and point density on the Accuracy of a Bathymetric Model, in 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), pp. 148–153, IEEE, https://doi.org/10.1109/MetroSea58055.2023.10317127. Ashphaq, M., P. K. Srivastava, and D. Mitra (2021), Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research, Journal of Ocean Engineering and Science, 6(4), 340–359, https://doi.org/10.1016/j.joes.2021.02.006. EDN: FPRQCW Becker, M., M. Karpytchev, and F. Papa (2019), Hotspots of Relative Sea Level Rise in the Tropics, in Tropical Extremes, pp. 203–262, Elsevier, https://doi.org/10.1016/B978-0-12-809248-4.00007-8. Brown, M. E., S. D. Arias, and M. Chesnes (2023), Review of ICESat and ICESat-2 literature to enhance applications discovery, Remote Sensing Applications: Society and Environment, 29, 100,874, https://doi.org/10.1016/j.rsase.2022.100874. EDN: BJCYNL Burrough, P. A., R. A. McDonnell, and C. D. Lloyd (2015), Principles of geographical information systems, 432 pp., Oxford University Press, USA. Childs, C. (2004), Interpolating surfaces in ArcGIS spatial analyst, ArcUser. Collet, S., T. Kidokoro, P. Karamchandani, and T. Shah (2018), Future-Year Ozone Isopleths for South Coast, San Joaquin Valley, and Maryland, Atmosphere, 9(9), 354, https://doi.org/10.3390/atmos9090354. de Souza, E. C. B., C. P. Kruger, and C. R. Sluter (2003), Determinação das variações volumétricas no ISTMO da ilha do mel utilizando PDGPS, Boletim de Ciências Geodésicas, 9(1), 53–74. Devi, P. Y., and X. Xi (2020), The impacts of climate change on the coastal zone of Mauritius, Journal of East China Normal University (Natural Science), 2020(S1)(104), https://doi.org/10.3969/j.issn.1000-5641.202092213. Doorga, J. R. S., M. Sadien, N. A. Bheeroo, et al. (2021), Assessment and management of coastal erosion: Insights from two tropical sandy shores in Mauritius Island, Ocean & Coastal Management, 212, 105,823, https://doi.org/10.1016/j.ocecoaman.2021.105823. Duvat, V. K. E., A. Anisimov, and A. K. Magnan (2020), Assessment of coastal risk reduction and adaptation-labelled responses in Mauritius Island (Indian Ocean), Regional Environmental Change, 20(4), https://doi.org/10.1007/s10113 -020-01699-2. doi: 10.1007/s10113-020-01699-2; EDN: EZPFOF Dysart, P. S. (1996), Bathymetric surface modeling: A machine learning approach, Journal of Geophysical Research: Solid Earth, 101(B4), 8093–8105, https://doi.org/10.1029/95JB03737. ESRI (2024a), GIS Software for Mapping and Spatial Analytics, https://www.esri.com. ESRI (2024b), How Kriging works, https://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-kriging-works.htm. Ferreira, I. O., D. D. Rodrigues, G. Rodrigues dos Santos, and L. M. F. Rosa (2017), In bathymetric surfaces: IDW or Kriging?, Boletim de Ciências Geodésicas, 23(3), 493–508, https://doi.org/10.1590/S1982-21702017000300033. GAGE Facility (2021), Geoid Height Calculator, https://www.unavco.org/software/geodetic-utilities/geoid-heightcalculator/geoid-height-calculator.html. Giribabu, D., R. Hari, J. Sharma, et al. (2023), Prerequisite Condition of Diffuse Attenuation Coefficient Kd(490) for Detecting Seafloor from ICESat-2 Geolocated Photons During Shallow Water Bathymetry, Hydrology, 11(1), 11, https://doi.org/10.11648/j.hyd.20231101.12. EDN: MCPBKN Giribabu, D., R. Hari, J. Sharma, et al. (2024), Performance assessment of GEBCO_2023 gridded bathymetric data in selected shallow waters of Indian ocean using the seafloor from ICESat-2 photons, Marine Geophysical Research, 45(1), https://doi.org/10.1007/s11001-023-09534-z. EDN: YHDIEK Guo, X., X. Jin, and S. Jin (2022), Shallow Water Bathymetry Mapping from ICESat-2 and Sentinel-2 Based on BP Neural Network Model, Water, 14(23), 3862, https://doi.org/10.3390/w14233862. EDN: DEHSRY Hawker, L., and J. Neal (2021), FABDEM V1-0, https://doi.org/10.5523/BRIS.25WFY0F9UKOGE2GS7A5MQPQ2J7. Henrico, I. (2021), Optimal interpolation method to predict the bathymetry of Saldanha Bay, Transactions in GIS, 25(4), 1991–2009, https://doi.org/10.1111/tgis.12783 EDN: CEAIBZ Hilldale, R. C., and D. Raff (2007), Assessing the ability of airborne LiDAR to map river bathymetry, Earth Surface Processes and Landforms, 33(5), 773–783, https://doi.org/10.1002/esp.1575. INHO (2024), National Hydrographic Office, https://hydrobharat.gov.in. Li, J., and A. D. Heap (2014), Spatial interpolation methods applied in the environmental sciences: A review, Environmental Modelling & Software, 53, 173–189, https://doi.org/10.1016/j.envsoft.2013.12.008. Li, Z., Z. Peng, Z. Zhang, et al. (2023), Exploring modern bathymetry: A comprehensive review of data acquisition devices, model accuracy, and interpolation techniques for enhanced underwater mapping, Frontiers in Marine Science, 10, https://doi.org/10.3389/fmars.2023.1178845. EDN: XGBGKI Luo, W., M. C. Taylor, and S. R. Parker (2007), A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales, International Journal of Climatology, 28(7), 947–959, https://doi.org/10.1002/joc.1583. Markus, T., T. Neumann, A. Martino, et al. (2017), The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sensing of Environment, 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029. Mesić Kiš, I. (2016), Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field, Rudarsko-geološko-naftni zbornik, 31(2), 41–58, https://doi.org/10.17794/rgn.2016.2.4. National Snow and Ice Data Center (2023), OpenAltimetry: Visulize and download surface elvevation data from across the Earth, over time, https://openaltimetry.earthdatacloud.nasa.gov/data/. Neumann, T. A., A. J. Martino, T. Markus, et al. (2019), The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System, Remote Sensing of Environment, 233, 111,325, https://doi.org/10.1016/j.rse.2019.111325. Parrish, C., L. Magruder, A. Neuenschwander, et al. (2019), Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance, Remote Sensing, 11(14), 1634, https://doi.org/10.3390/rs11141634. EDN: GCZGMY Pratomo, D. G., R. A. D. Safira, and O. Stefani (2023), A comparison of different GIS-based interpolation methods for bathymetric data: case study of Bawean Island, East Java, Geodesy and cartography, 49(4), 186–194, https://doi.org/10.3846/gac.2023.18250. EDN: KRIMUW Ranndal, H., P. Sigaard Christiansen, P. Kliving, O. Baltazar Andersen, and K. Nielsen (2021), Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data, Remote Sensing, 13(17), 3548, https://doi.org/10.3390/rs13173548. EDN: CWLPJI Sibson, R. (1981), A Brief Description of Natural Neighbor Interpolation, in Interpolating Multivariate Data, John Wiley & Sons, New York. Smith, W. H. F., and D. T. Sandwell (1997), Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings, Science, 277(5334), 1956–1962, https://doi.org/10.1126/science.277.5334.1956. EDN: CNJROJ Vogt, P. R., and B. E. Tucholke (1986), Imaging the ocean floor: History and state of the art, pp. 19–44, https://doi.org/10.1130/DNAG-GNA-M.19. Wang, S., G. H. Huang, Q. G. Lin, et al. (2014), Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada, International Journal of Climatology, 34(14), 3745–3751, https://doi.org/10.1002/joc.3941. Watson, D. (1992), Contouring: A Guide to the Analysis and Display of Spatial Data, Pergamon Press, London. Wölfl, A.-C., H. Snaith, S. Amirebrahimi, et al. (2019), Seafloor Mapping - The Challenge of a Truly Global Ocean Bathymetry, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00283. EDN: XTXYXM Xie, C., P. Chen, D. Pan, C. Zhong, and Z. Zhang (2021), Improved Filtering of ICESat-2 Lidar Data for Nearshore Bathymetry Estimation Using Sentinel-2 Imagery, Remote Sensing, 13(21), 4303, https://doi.org/10.3390/rs13214303. EDN: APROCY
Supplementary files



