ENHANCED WINTERTIME CONVERGENCE OF ATMOSPHERIC AND OCEANIC HEAT TRANSPORTS IN THE BARENTS SEA REGION UNDER PRESENT CLIMATE WARMING

Cover Page

Cite item

Full Text

Abstract

A distinctive feature of the Barents Sea climate system is a suggested positive feedback in the ocean–sea ice–atmosphere system that can enhance regional climate variations. The objective of this study is to assess the effectiveness of this positive feedback for the advective heat fluxes in the winter season using the ORAS4 ocean reanalysis and ERA5 atmospheric reanalysis data for the period 1959–2017. Based on the signs of the linear trends of the oceanic heat transport, two periods were identified for the analysis: 1959–1987 and 1987–2017. Composite maps of surface wind fields indicate an increase in the effectiveness of the positive feedback in the Barents Sea region during the present period relative to the previous one. This is manifested in the strengthening of the southern winds over the southeastern part of the sea in years with the maximum oceanic heat transport and in the weakening of the northern winds over the northwestern part of the sea in years with the minimum oceanic heat transport. The convergence of the atmospheric sensible heat transport over the Barents Sea has a maximum in the lower troposphere, 1000–900 hPa. An increasing synchronization of the convergence of atmospheric and oceanic heat transports in the Barents Sea region, derived in this study, contributes to an acceleration of the local warming.

About the authors

M. Latonin

Nansen International Environmental and Remote Sensing Centre; A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: m.m.latonin@ifaran.ru
ORCID iD: 0000-0002-8170-9833
SPIN-code: 1084100
Scopus Author ID: 57219383968
ResearcherId: AAD-2691-2019
Department of Climate Processes Research, candidate of geographical sciences 2022

I. Bashmachnikov

Nansen International Environmental and Remote Sensing Centre; Saint Petersburg State University

ORCID iD: 0000-0002-1257-4197
candidate of geographical sciences

V. Semenov

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; Institute of Geography RAS

ORCID iD: 0000-0001-7632-7921
SPIN-code: 2495-8521
Scopus Author ID: 56879243400
academician Russian Academy of Sciences, professor Russian Academy of Sciences, doctor of physical and mathematical sciences

References

  1. Årthun M., Schrum C. Ocean surface heat flux variability in the Barents Sea // Journal of Marine Systems. — 2010. — Vol. 83, no. 1/2. — P. 88–98. — doi: 10.1016/j.jmarsys.2010.07.003.
  2. Årthun M., Eldevik T., Smedsrud L. H., et al. Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat // Journal of Climate. — 2012. — Vol. 25, no. 13. — P. 4736–4743. — doi: 10.1175/jcli-d-11-00466.1.
  3. Balmaseda M. A., Mogensen K., Weaver A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4 // Quarterly Journal of the Royal Meteorological Society. — 2012. — Vol. 139, no. 674. — P. 1132–1161. — doi: 10.1002/qj.2063.
  4. Bashmachnikov I. L., Yurova A. Y., Bobylev L. P., et al. Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region // Izvestiya, Atmospheric and Oceanic Physics. — 2018. — Vol. 54, no. 2. — P. 213–222. — doi: 10.1134/s0001433818020032.
  5. Bengtsson L., Semenov V. A., Johannessen O. M. The Early Twentieth-Century Warming in the Arctic - A Possible Mechanism // Journal of Climate. — 2004. — Vol. 17, no. 20. — P. 4045–4057. — doi: 10.1175/1520-0442(2004)017<4045:tetwit>2.0.co;2.
  6. Brutsaert W. Evaporation into the Atmosphere. — Springer Netherlands, 1982. — doi: 10.1007/978-94-017-1497-6.
  7. Cai Z., You Q., Chen H. W., et al. Amplified wintertime Barents Sea warming linked to intensified Barents oscillation // Environmental Research Letters. — 2022. — Vol. 17, no. 4. — doi: 10.1088/1748-9326/ac5bb3.
  8. Eisbrenner E., Chafik L., Åslund O., et al. Interplay of atmosphere and ocean amplifies summer marine extremes in the Barents Sea at different timescales // Communications Earth & Environment. — 2024. — Vol. 5, no. 1. — doi: 10.1038/s43247-024-01610-5.
  9. Francis J. A., Vavrus S. J. Evidence linking Arctic amplification to extreme weather in mid‐latitudes // Geophysical Research Letters. — 2012. — Vol. 39, no. 6. — doi: 10.1029/2012gl051000.
  10. Hersbach H., Bell B., Berrisford P., et al. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. — 2020. — Vol. 146, no. 730. — P. 1999–2049. — doi: 10.1002/qj.3803.
  11. Ingvaldsen R. B., Assmann K. M., Primicerio R., et al. Physical manifestations and ecological implications of Arctic Atlantification // Nature Reviews Earth & Environment. — 2021. — Vol. 2, no. 12. — P. 874–889. — doi: 10.1038/s43017-021-00228-x.
  12. Inoue J., Hori M. E., Takaya K. The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly // Journal of Climate. — 2012. — Vol. 25, no. 7. — P. 2561–2568. — doi: 10.1175/jcli-d-11-00449.1.
  13. Isaksen K., Nordli Ø., Ivanov B., et al. Exceptional warming over the Barents area // Scientific Reports. — 2022. — Vol. 12, no. 1. — doi: 10.1038/s41598-022-13568-5.
  14. Kalavichchi K. A., Bashmachnikov I. L. Mechanism of a Positive Feedback in Long-Term Variations of the Convergence of Oceanic and Atmospheric Heat Fluxes and of the Ice Cover in the Barents Sea // Izvestiya, Atmospheric and Oceanic Physics. — 2019. — Vol. 55, no. 6. — P. 640–649. — doi: 10.1134/s0001433819060173.
  15. Kalavichchi K. A., Bashmachnikov I. L. Ocean–Atmosphere Interactions in the Barents Sea from Reanalyses Data // Izvestiya, Atmospheric and Oceanic Physics. — 2021. — Vol. 57, no. 2. — P. 159–169. — doi: 10.1134/s0001433821020067.
  16. Latonin M. M., Bobylev L. P., Bashmachnikov I. L., et al. Dipole pattern of meridional atmospheric internal energy transport across the Arctic gate // Scientific Reports. — 2022. — Vol. 12, no. 1. — doi: 10.1038/s41598-022-06371-9.
  17. Lind S., Ingvaldsen R. B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import // Nature Climate Change. — 2018. — Vol. 8, no. 7. — P. 634–639. — doi: 10.1038/s41558-018-0205-y.
  18. Petoukhov V., Semenov V. A. A link between reduced Barents‐Kara sea ice and cold winter extremes over northern continents // Journal of Geophysical Research: Atmospheres. — 2010. — Vol. 115, no. D21. — doi: 10.1029/2009jd013568.
  19. Przybylak R., Wyszyński P. Air temperature changes in the Arctic in the period 1951–2015 in the light of observational and reanalysis data // Theoretical and Applied Climatology. — 2019. — Vol. 139, no. 1/2. — P. 75–94. — doi: 10.1007/s00704-019-02952-3.
  20. Schauer U., Loeng H., Rudels B., et al. Atlantic Water flow through the Barents and Kara Seas // Deep Sea Research Part I: Oceanographic Research Papers. — 2002. — Vol. 49, no. 12. — P. 2281–2298. — doi: 10.1016/s0967-0637(02)00125-5.
  21. Semenov V. A., Park W., Latif M. Barents Sea inflow shutdown: A new mechanism for rapid climate changes // Geophysical Research Letters. — 2009. — Vol. 36, no. 14. — doi: 10.1029/2009gl038911.
  22. Semenov V. A., Latif M., Dommenget D., et al. The Impact of North Atlantic–Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature // Journal of Climate. — 2010. — Vol. 23, no. 21. — P. 5668–5677. — doi: 10.1175/2010jcli3347.1.
  23. Semenov V. A., Latif M. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012 // Environmental Research Letters. — 2015. — Vol. 10, no. 5. — doi: 10.1088/1748-9326/10/5/054020.
  24. Smedsrud L. H., Esau I., Ingvaldsen R. B., et al. The Role of the Barents Sea in the Arctic Climate System // Reviews of Geophysics. — 2013. — Vol. 51, no. 3. — P. 415–449. — doi: 10.1002/rog.20017.
  25. Surkova G. V., Romanenko V. A. Climate change and heat exchange between atmosphere and ocean in the Arctic based on data from the Barents and the Kara sea // Arctic and Antarctic Research. — 2021. — Vol. 67, no. 3. — P. 280–292. — doi: 10.30758/0555-2648-2021-67-3-280-292.
  26. Trenberth K. E., Caron J. M. Estimates of Meridional Atmosphere and Ocean Heat Transports // Journal of Climate. — 2001. — Vol. 14, no. 16. — P. 3433–3443. — doi: 10.1175/1520-0442(2001)014<3433:eomaao>2.0.co;2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Latonin M., Bashmachnikov I., Semenov V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.