

Специальный выпуск: «К 80-летию секции "Осадочные породы" Московского общества испытателей природы (МОИП)»

Петрогенетическая типизация кислых вулканитов кровли нефтеносного доюрского комплекса месторождения в Елизаровском прогибе Западно-Сибирской плиты

Ю. В. Ростовцева 1* , В. Д. Немова 2,3 , Н. В. Немченко 4 , С. В. Томасенко 4 , В. В. Пустыльникова 4

Рассматриваются результаты петрогенетической типизации кислых вулканитов (дацит-риолитового состава) кровли нефтеносного доюрского комплекса месторождения, расположенного в Елизаровском прогибе Западно-Сибирской плиты. Этот комплекс вулканитов имеет сложное строение и по результатам опробования скважин характеризуется крайне высокой изменчивостью продуктивности пород, неравномерной обводненностью, вероятно, наличием нескольких уровней водонефтяных контактов. Изучение кернового материала (около 850 пог. м) и пород в шлифах (1320 штук), а также применение высокоточных методов исследований (например, микрозондового и рентгенофазового анализов) позволили на основе вещественных, структурных и текстурных признаков выделить 32 типа пород, объединенных в 7 групп сходных образований. В результате генетической интерпретации строения пород установлено присутствие в разрезе лав, лавобрекчий/кластолав, лавокластитов, туфов, озерных отложений без и с наличием пирокластики, а также метасоматитов. Образования первых четырех генетических типов в рассматриваемом комплексе пород преобладают. В изучаемых вулканитах достоверные признаки развития горизонтов кор выветривания не выявлены. Вулканиты характеризуются разной степенью вторичной преобразованности, в которых формирование улучшенных коллекторских свойств происходило в основном за счет выщелачивания, происходившего под действием растворов на глубине, а также возникновения трещиноватости. Наилучшими коллекторскими свойствами отличаются в основном эффузивы с перлитовой текстурой, вулканокластиты и эффузивы миндалекаменные. Вулканитам с улучшенными фильтрационно-емкостными свойствами (ФЕС) характерны значения пористости до 25-28% и проницаемости до первых десятков мД.

Ключевые слова: вулканиты, петротипы, генотипы, коллекторские свойства, доюрский комплекс, Западно-Сибирская плита.

Цитирование: Ростовцева Ю. В., Немова В. Д., Немченко Н. В., Томасенко С. В., Пустыльникова В. В. Петрогенетическая типизация кислых вулканитов кровли нефтеносного доюрского комплекса месторождения в Елизаровском прогибе Западно-Сибирской плиты // Russian Journal of Earth Sciences. — 2025. — Т. 25. — ES4013. — DOI: 10.2205/2025es001042 — EDN: DMLDTW

Научная статья

$\rm https://elibrary.ru/DMLDTW$

Получено: 2 июня 2025 г. Принято: 13 июля 2025 г. Опубликовано: 30 сентября 2025 г.

© 2025. Коллектив авторов.

Введение

Как известно, Западно-Сибирский осадочный мегабассейн состоит из двух этажей нефтегазоносности: доюрского и юрско-кайнозойского. В доюрском комплексе (ДЮК) Западно-Сибирской плиты обнаружено около 41 залежи углеводородов и 37 непромышленных притоков нефти и газа, приуроченных к палеозойским и триасовым толщам

 $^{^{1}\}Gamma$ еофизический центр Российской академии наук (ГЦ РАН), Москва, Россия

 $^{^2\}mathrm{OOO}$ «ЛУКОЙЛ-Инжиниринг», Москва, Россия

 $^{^3 {\}rm P} \Gamma {\rm Y}$ нефти и газа (НИУ) имени И. М. Губкина, Москва, Россия

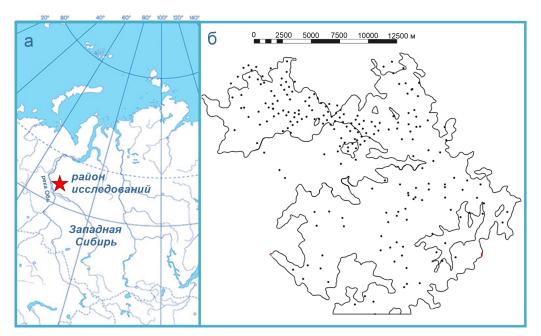
⁴ Апрелевское отделение Всероссийского научно-исследовательского геологического нефтяного института (ВНИГНИ), Апрелевка, Московская область, Россия

^{*} Контакт: Юлиана Валерьевна Ростовцева, yu.rostovtseva@gcras.ru

[*Шеин*, 2006]. Заметная часть этих нефтепроявлений выявлена в кровле доюрских образований, среди которых могут встречаться и вулканогенные породы. Изучение нефтенасыщенных вулканитов, относящихся преимущественно к породам первично в основном непроницаемым, вызывает особый интерес, учитывая своеобразия формирования в них коллекторских свойств и сложность их строения.

В пределах изучаемого месторождения, в Елизаровском прогибе Западно-Сибирской плиты, в кровле нефтеносного доюрского комплекса выделяется толща кислых вулканитов, которые до сих пор остаются недостаточно изученными. Часть исследователей считает, что нефтепроявление в них полностью или частично может быть связано с развитием горизонтов кор выветривания, формирующимся по этим образованиям [Смирнова и ∂p ., 2024; Хромова и ∂p ., 2015]. По другим данным [Шмаков $u \ \partial p$., 2023, метасоматические процессы, включающие выщелачивание, могли приводить к увеличению пустотности. Этот комплекс вулканитов по результатам опробования скважин характеризуется крайне высокой изменчивостью продуктивности пород, неравномерной обводненностью, вероятно, наличием нескольких уровней водонефтяных контактов. Неоднократно рассматриваемые породы ДЮК были типизированы по различным критериям [Смирнова и ∂p ., 2024]. Большой объем разносторонних исследований выполнен в части интерпретации данных сейсморазведки, направленных на картирование областей с повышенными ФЕС, многочисленных тектонических нарушений [*Смирнов и др.*, 2022; *Смирнова и др.*, 2024; *Хромова и др.*, 2015; *Шмаков и др.*, 2023]. Тем не менее, вопросов о строении этих вулканитов еще остается достаточно много, в связи с чем возникла необходимость в проведении более глубокого анализа кернового материала.

В данной статье рассматриваются результаты разработки петрогенетической типизации исследуемых продуктивных вулканитов, включающей выделение разностей пород, их генетическую интерпретацию, а также оценку коллекторских свойств.


Характеристика изучаемых образований

Изучаемое месторождение находится в центральной части Фроловской мегавпадины Западно-Сибирской плиты в пределах Елизаровского прогиба (рис. 1). Елизаровский прогиб, простирающийся с юго-востока на северо-запад на 143 км при ширине 54 км, ограничен на западе Красноленинским сводом, на северо-востоке — Верхнеляминским валом, на востоке — Сыньеганской террасой, на юге — седловиной, отделяющей рассматриваемую структуру от Южно-Елизаровского прогиба [Сурков и Жеро, 1981; Тектоническая карта..., 1998]. Месторождение имеет площадь 15 × 20 км.

Доюрский комплекс, в пределах исследуемого месторождения, представлен мощными вулканогенными толщами преимущественно дацит-риолитового состава [Конторович и ∂p ., 1975; Смирнова и ∂p ., 2024]. Мощность вулканитов, кровля которых вскрывается на глубинах около 2700 м и ниже, по геофизическим данным составляет не менее 400 м. На сейсмических профилях вулканогенная толща характеризуется серией полого залегающих отражающих поверхностей с крутопадающими разрывными нарушениями амплитудами до 100 м. Отложения ДЮК делятся на блоки, что обусловлено развитием двух систем тектонических нарушений субмеридионального и СЗ-ЮВ простирания.

Кислые вулканиты с юго-запада граничат с позднепротерозойскими высокотемпературными метаморфитами фундамента Красноленинского свода, с северо-востока — с палеозойскими карбонатными образованиями [Шадрина, 2018]. В центральной части месторождения кровля пермско-триасовых вулканитов перекрывается юрскими терригенными отложениями заводоуковской серии [Булынникова и др., 1972], а на флангах — триасовыми терригенными толщами челябинской серии [Пучков, 2010].

Полученные возрастные датировки U-Pb методом по цирконам свидетельствуют о приуроченности кислых вулканитов к пермско-триасовому этапу магматизма $(266,0\pm4,0-246,4\pm3,5$ млн лет [$\mathit{Шадрина},\,2018$] и $254\pm2-248,2\pm1,3$ млн лет [$\mathit{Смирнова}\,u\,\partial p.,\,2024$].

Рис. 1. Расположение (а) и контуры (б) предполагаемой продуктивности вулканитов кровли ДЮК изучаемого месторождения (точками показано расположение скважин).

Материалы и методы

В ходе проведенного исследования проанализированы данные по 12 скважинам с суммарным объёмом отобранного керна около 850 пог. м, а также породы изучались в шлифах (около 1320 штук). Минеральный состав рассматриваемых образований дополнительно определялся с помощью электронной микроскопии, включающей микрозондовые измерения, и методами рентгеновской дифрактометрии. Эти виды высокоточных работ выполнялись в структурных подразделениях геологического факультета МГУ имени М. В. Ломоносова с использованием растрового электронного микроскопа JEOIL JSM-IT500 (аналитик В. О. Япаскурт, 42 определения) и дифрактометра Rigaku MiniFlex 600 (аналитики В. Л. Косоруков и А. В. Грачева, 400 проб). При оценке коллекторских свойств пород учитывались результаты лабораторных исследований филиала ООО «ЛУКОЙЛ-Инжиниринг» «КогалымНИПИнефть».

Особенностью кернового материала рассматриваемых образований ДЮК является довольно низкая охарактеризованность продуктивного высокоизменчивого разреза в связи с крайне сложным соотношением продуктивных и непродуктивных пород. Несмотря на это, в ходе работ удалось обобщить результаты исследований керна таким образом, чтобы получить достаточно надежные данные о строении целевых горизонтов пород-коллекторов.

Выделение типов пород и их генетическая типизация проводились с использованием методических подходов, изложенных в работах *Е. Ф. Малеева* [1980], *В. Т. Фролова* [1984, 1995], *П. Ф. Емельяненко и Е. Б. Яковлевой* [1985], а также *J. McPhie et al.* [1993]. Согласно *Е. Ф. Малееву* [1980, стр. 7], термином «вулканиты» в отечественной геологии и за рубежом обозначают продукты вулканизма, включающие эффузивные, вулканокластические и вулканогенно-осадочные разности, независимо от их химического состава. В таком понимании этот термин будет использоваться в данной статье.

Типы пород

Определяющими признаками любых горных пород являются вещественный состав и структура [Φ ролов, 1992]. Эти характеристики, а также текстурные признаки, стали основой для выделения типов пород.

По набору первичных породообразующих минералов изучаемые вулканиты являются в целом однотипными и относятся к магматическим породам кислого состава, отвечающим риолитам и дацитам. Эффузивные разности вулканитов представлены

палеотипными породами, в которых реликтовые структуры стекловатой основной массы трудно различимы из-за процессов девитрификации. Вулканиты характеризуются разной степенью вторичной преобразованности, которая может по-разному проявляться даже в однотипных разностях пород. При наличии наиболее интенсивных вторичных изменений, приводящих к полной потере первичных вещественных и структурных признаков, породы рассматривались как метасоматические образования (метасоматиты). Минеральный состав пород дополнительно уточнялся рентгенофазовым и микрозондовым анализами. В керне отдельных скважин, наряду с широким развитием вулканитов, также установлено наличие осадочных пород (например, алевролитов и аргиллитов). Первичные признаки пород, отражающие процессы их зарождения, являлись основой для разработки их типизации, которая проводилась с опорой на результаты макрои микроскопических исследований. При использовании этих методических подходов выделялись петротипы для характеристики вулканитов и метасоматитов, а также литотипы для описания осадочных пород. Типовые разности пород объединялись в группы по сходным признакам строения. Вулканиты резко преобладают среди рассматриваемых образований. Наличие коллекторских свойств в изучаемых породах ДЮК зафиксировано только в вулканитах.

В ходе проведенного исследования установлены следующие группы типов пород (табл. 1, рис. 2): (1) эффузивов афировых с разными текстурами: массивной, миндалекаменной (пузырчатой), перлитовой; (2) эффузивов порфировых с разными текстурами: массивной, полосчатой, флюидальной, миндалекаменной (пузырчатой), перлитовой; (3) эффузивов сферолитовых; (4) вулканокластитов; (5) обломочных, глинистых и органических пород с примесью пирокластики; (6) обломочных и глинистых пород без примеси пирокластики; (7) метасоматитов. Всего было выделено около 32 петротипов и литотипов, среди которых наиболее широко распространены вулканиты второй, третьей и четвертой групп пород. При интерпретации данных геофизических исследований скважин (ГИС) возможно использование как отдельных петротипов и литотипов (например, слагающих значительные интервалы разреза), так и их групп, объединяющие сходные разности [Немова и ∂p , 2024].

Генетическая типизация

Выделение петротипов и литотипов необходимо для проведения генетических интерпретаций, которые позволяют выявлять закономерности строения толщ и создавать с большей степенью достоверности геологические модели, в том числе нефтегазовых месторождений. При генетических интерпретациях реконструируются способы и условия формирования различных образований. При определении генетических особенностей строения изучаемого комплекса ДЮК были использованы методические подходы и классификации вулканических и вулканогенно-осадочных пород, изложенные в работах Е. Ф. Малеева [1980], В. Т. Фролова [1984, 1995], П. Ф. Емельяненко и Е. Б. Яковлевой [1985], и Ј. МсРhie et al. [1993], а также учитывались разнообразие и характер распределения выявленных типов пород по разрезам скважин. В результате проведенного исследования было установлено 5 генетических групп образований (табл. 2): (1) вулканогенная, (2) осадочно-вулканогенная, (3) вулканогенно-осадочная, (4) осадочная и (5) метасоматическая. Группы подразделяются на ряды с выделением генетических типов.

К группе вулканогенных образований относятся породы, сформированные магматическими процессами. Образования осадочно-вулканогенной группы отличаются наличием обломочной структуры и ведущим влиянием на их формирование вулканической деятельности. Вулканогенно-осадочной группе отвечают породы, происхождение которых обусловлено действием экзогенных факторов при участии в их строении пирокластического материала. Осадочные образования сформированы только экзогенными процессами. Метасоматическая группа представлена породами, которые претерпели значительные вторичные изменения с полной потерей первичных признаков за счет интенсивных метасоматических замещений и, возможно, проработки гидротермальными растворами. Следует отметить, что все рассматриваемые породы в той или иной мере затронуты вторичными преобразованиями, но к метасоматической группе пород

Таблица 1. Типы пород изучаемых образований кровли доюрского комплекса (ДЮК) месторождения в Елизаровском прогибе Западно-Сибирской плиты

Группы	Петротипы и литотипы		
Первая группа: эффузивы с афировой структурой (A)	С массивной текстурой (А1)		
	С миндалекаменной текстурой (А2)		
	С перлитовой текстурой (А3)		
Вторая группа:	С массивной текстурой (П1) с микролитовой или интерсертальной (П1-1), витрофировой или гиалопилитовой (П1-2) и участковой слабовыраженной сферолитовой (П1-3) структурами в основной массе		
эффузивы с порфировой структурой (П)	С полосчатой текстурой (П2)		
	С флюидальной текстурой ламинарной (П3-1) и «зигзагообразной» (П3-2)		
	С миндалекаменной текстурой (П4)		
	С перлитовой текстурой (П5), включая редкие переходные разности с наличием сферолитов и миндалин		
Третья группа: эффузивы в основной массе сферолитовые (C)*	С сферолитами с радиально-лучистым строением (С1-1), с сферолитами с нечетким строением (С1-2) С литофизами (С2)		
Четвертая группа: вулканокластиты (КЛ, КТ)	Литокластические с брекчиевой структурой (брекчия лавовая) (КЛ): сцементированная лавой (КЛ1), с экзогенным заполнителем (КЛ2), тектонокластиты** (КЛ+)		
	Витрокластические (КТ1)		
	Кристалло-витрокластические (КТ2)		
	Кристалло-витро-литокластические (КТЗ)		
	Литокласто-кристалло-витрокластические (КТ4) с «фьямме»		
Пятая группа: обломочные, глинистые и органические породы с примесью пирокластики (Тал, Тар, Тов)	Алевролиты (Тал) с примесью пирокластического материала (рассеянного и сконцентрированного в линзы или прослои)		
	Аргиллиты алевритистые и алевролитовые (Тар) с примесью пирокластического материала (рассеянного и сконцентрированного в линзы или прослои): без (Тар1) и с нитевидными включениями органического вещества (ОВ) (Тар2)		
	Скопления органического вещества, переслаивающиеся с тонкими прослоями пирокластики (Тов)		
	Алевролит (Ал)		
Шестая группа: обломочные и глинистые породы без примеси пирокластики (Ал, АрАл, Ар, Аров)	Чередование алевролитовых и глинистых прослоев (ApAл)		
	Аргиллит алевритистый и алевритовый (Ар)		
	Аргиллит с обилием ОВ (Аров)		
Седьмая группа: метасоматиты (M)	Кальцито-глинисто-кварцевые породы (М): однородные (М1) и менее однородные (с отдельными реликтами первичных компонентов без (М2) и с включениями нитевидного ОВ (М2ов))		

Примечания к таблице:

^{*)} эффузивы этой группы обычно также содержат фенокристаллы и их сростки.
**) петротип выделяется условно при отсутствии уверенности в однозначности трактовки первичности или вторичности структурных признаков.

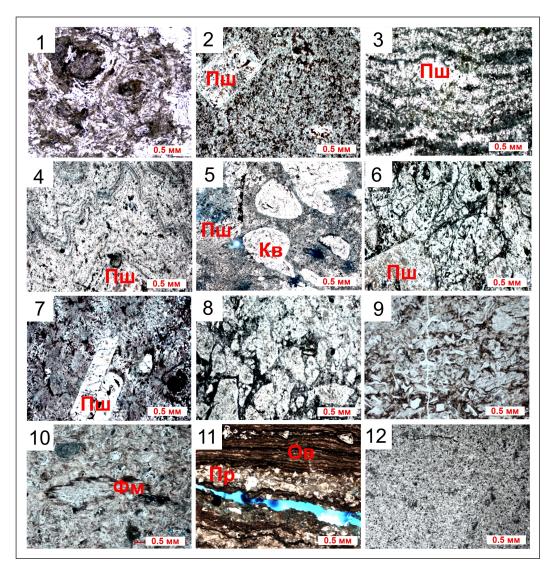


Рис. 2. Микрофотографии основных типов пород изучаемых образований кровли доюрского комплекса (ДЮК) месторождения в Елизаровском прогибе Западно-Сибирской плиты. 1–10 – вулканиты: 1 – эффузивы афировые с перлитовой текстурой (АЗ), 2 – эффузивы порфировые с массивной текстурой (П1-1), 3 – эффузивы порфировые с флюидальной ламинарной текстурой (П3-1), 4 – эффузивы порфировые с флюидальной «зигзагообразной» текстурой (П3-2), 5 – эффузивы порфировые с миндалекаменной текстурой (миндалины выполнены кварцем) (П4), 6 – эффузивы порфировые с перлитовой текстурой (П5), 7 – эффузивы сферолитовые (С1-1), 8 – литокластический вулканокластит (КЛ1), 9 – кристалло-витрокластический вулканокластит (КТ2), 10 – литокласто-кристалло-витрокластический вулканокластит с фьямме (КТ4), 11 – скопления органического вещества, переслаивающиеся с тонкими прослоями пирокластики (Тов); 12 – метасоматит (М1). Пш – полевые шпаты, Кв – кварц в миндалинах, Фм – включения вулканического стекла типа фьямме, Пр – включения пирокластики, Ов – нитевидные включения органического вещества. Микрофотографии сделаны при одном николе.

были отнесены образования, первичный генезис, которых восстановить достоверно не представлялся возможным.

Рассматриваемые образования почти полностью отвечают продуктам наземного кислого вулканизма, характеризующегося периодическими излияниями лав и интенсивной эксплозивной деятельностью. Среди образований вулканогенной группы выделяются два основных генетических типа: (1) лавы и (2) лавобрекчии/кластолавы. К кислым

Таблица 2. Генетическая типизация изучаемых образований кровли доюрского комплекса (ДЮК) месторождения в Елизаровском прогибе Западно-Сибирской плиты

Группа	Ряд	Генетические типы		Петротипы/Литотипы
Вулканогенная	эффузивный	лавы	лавовые купола	А1-3, П1-5, С1-2
		лавобрекчия/кластолава*		КЛ1
	осадочно- эффузивный	лавокластиты		КЛ2
Осадочно- вулканогенная	осадочно-эксплозивный	туфы	вулканокластический материал без четких признаков приуроченности к пирокластическим потокам	KT1-3
			пирокластические потоки: неспаянные и спаянные	KT4
Вулканогенно- осадочная	эксплозивно- осадочный	туффиты	озерные (?)	Тов, Тар1, Тар2, Тал
Осадочная	осадочный	озерные (?)		Ал, АрАл, Ар, Аров
Метасоматическая	вторичный	метасоматиты		М1, М2, Мов

Примечания к таблице:

лавам относятся купола и потоки, имеющие сходные петрографические признаки, но отличающиеся морфологией тел. Купола (экструзии) формируются за счет выжимания вязкой лавы из вулканического канала, к которому они приурочены. Их высота может колебаться от первых десятков метров до 600 м и более [Малеев, 1980]. Купола могут сочетаться с прорывающими их лавовыми потоками. Лавовые потоки, представляющие собой тела эффузивных пород удлиненной лентообразной формы, имеющие кислый состав характеризуются длиной обычно не более 10 км и разной мощностью (от первых десятков метров до 150 м) [Наседкин, 1975]. Одним из важных диагностических признаков лавовых потоков является наличие текстур флюидального течения, а также тонкая полосчатость. По присутствию в разрезе скважин петротипов эффузивов П2 и П3, отличающиеся подобными текстурами, однозначно определяется развитие лавовых потоков. Лавовым куполам и потокам свойственно зональное строение, которое четко прослеживается от периферии к центральным частям вулканических тел [Малеев, 1980; Наседкин, 1975; McPhie et al., 1993] (рис. 3). С этими образованиями сопоставлены эффузивы первой, второй и третьей групп выделенных типов пород (А1-3, П1-5, С1-2).

В результате дробления вязких лав формируются лавобрекчии, которые прослеживаются в верхних и нижних частях лавовых потоков, а также слагают апикальные части куполов. Лавобрекчии состоят из обломков лав, спаянных или сцементированных лавой того же извержения. Этому типу образований отвечает петротип КЛ1.

К образованиям осадочно-вулканогенной группы отнесены лавокластиты и туфы. Породы, сложенные обломками лав, сцементированными гидрохимически, относят к лавокластитам, которые обычно развиты во внешних (нижних, верхних и краевых) частях лавовых потоков, а также в апикальных и периферических частях лавовых

^{*)} генотип выделяется условно из-за развития вторичных изменений, затрудняющих его отличать от лавобрекчий.

Рис. 3. Зональное строение потока кислых лав [по *McPhie et al.*, 1993, с упрощением]. Общий вид в плане (а) и с указанием зон образования везикул, сферолитов и фрагментации (б).

куполов. Лавокластиты представлены петротипом КЛ2. Породы с обломочной структурой, состоящие из вулканокластического материала с присутствием вулканического стекла, кристаллокластов (кварца, Пш) и фрагментов кислых эффузивов сопоставлены с различными разновидностями туфов (КТ1–4). Образования, выделяемые в петротип КТ4, с включениями фрагментов стекла с расщепленными краями (известные под названием фьямме), были наиболее уверенно отнесены к накоплениям пирокластических потоков. Наличие туфов в изучаемых отложениях ДЮК свидетельствует о высокой эксплозивной деятельности существовавшего в прошлом наземного вулкана.

Вулканические извержения могут сопровождаться пеплопадами, тефровый материал которых плащеобразно оседает на земную поверхность, в том числе попадая в места накопления осадочных образований, встречаясь в них как в рассеянном виде, так и в тонких прослоях. Подобным разностям, содержавшим как осадочную, так и пирокластическую составляющую, отвечают породы вулканогенно-осадочной генетической группы (туффитам) (Тал, Тар1, Тар2, Тов). Осадочная составляющая этих пород формировалась, скорее всего, в озерных условиях, что подтверждается наличием тонкого алевритового и глинистого материала, горизонтальной слоистости, нитевидных включений сапропелевого органического вещества, а также локализованным пространственным расположением.

Образования осадочной генетической группы отличаются от рассматриваемых вулканогенно-осадочных пород только отсутствием в них вулканокластического материала. Их осаждение также происходило в озерной обстановке (Ал, АрАл, Ар, Аров).

В отдельную группу были выделены метасоматиты (М1, М2, Мов), утратившие почти полностью первичные признаки строения и имеющие кальцито-глинисто-кремневый состав. По наличию в них местами реликтов рогульчатой витрокластики, редко нитевидных включений органического вещества, а также их сочетанию в разрезе с осадочными образованиями (озерного генезиса) и туффитами предполагается, что интенсивные вторичные преобразования этих пород могли быть связаны с попаданием пирокластики в водную среду и ее быстрым остыванием или обусловлены действием гидротермальных процессов.

По распределению выделенных типов вулканитов по вертикали и латерали, учитывая их генетическую принадлежность, в изучаемом комплексе ДЮК выявлена закономерная смена пород. В зависимости от степени раскаленности, длительности остывания и расположения (в центральных частях потоков лав и/или близости к жерлу) прослеживается определенная парагенетическая последовательность разных типов вулканитов (рис. 4). Наиболее высокотемпературными и медленно остывающими являются разности, отвечающие эффузивам с порфировой структурой и массивной текстурой (П1), затем при снижении температуры и более быстром остывании формируются эффузивы сферолитовые (С), которые сменяются эффузивами как афировыми (А), так и порфировыми с миндалекаменной и/или перлитовой текстурами (П4 и П5), часто

сочетающиеся с вулканокластитами: брекчиями, состоящими из обломков лав (КЛ) и туфами (КТ).

Рис. 4. Последовательность смены основных типов вулканитов в зависимости от температурного режима и времени остывания. П1 — эффузивы порфировые с массивной текстурой; С1 — эффузивы сферолитовые без литофизов; С2 — эффузивы сферолитовые с литофизами; А — эффузивы афировые; П2—П5 — эффузивы полосчатые, флюидальные, миндалекаменные и перлитовые; КЛ — вулканокластиты литокластические с брекчиевой структурой; КТ — вулканокластиты с лито-, кристалло- и витрокластами. Микрофотографии сделаны при одном николе.

Следует отметить, что сферолитовые эффузивы характеризуются наличием в основной массе сферолитов радиально-лучистого строения, состоящих из волокон полевых шпатов и минералов кремнезема (обычно кристобалита, кварца). Сферолиты образуются при высокотемпературной девитрификации вулканического стекла. Согласно *G. Lofgren* [1971], сферолиты, формирующиеся при температурах около 700°C, отличаются широко разнесенным расположением волокон. Снопоподобные связки волокон (bow-tie) возникают при температурах от 400 до 600°C, а сферические пучки радиально-лучистого строения образуются при температурах < 400°C. Размеры сферолитов могут быть различными (от микроскопических (доли мм) до 10–20 см) [*Емельяненко и Яковлева*, 1985; *Steven and Lipman*, 1976]. В изучаемых вулканитах встречаются как менее, так и более высокотемпературные (например, с литофизами) сферолитовые структуры.

Миндалекаменные эффузивы образуются при переходе магматических пород в палеотипное состояние, в которых пустоты от пузырьков газа (везикулы), возникающих при отделении от магмы летучих компонентов, выполняются вторичными минералами. Обилие, форма и расположение везикул контролируется рядом факторов, среди которых исходное содержание летучих компонентов в магме, вязкость расплава, скорости декомпрессии и диффузии, слияния пузырьков газа [McPhie et al., 1993]. Миндалины в рассматриваемых эффузивах обычно полностью или частично выполнены кварцем или хлоритом, реже другими минералами, а также часто со следами выщелачивания.

Перлитовые эффузивы формируются в результате гидратации вулканического стекла, сопровождающейся увеличением объема. Напряжения, возникающие при диффузии воды, высвобождаются за счет образования концентрических трещин, расположенных вокруг сферических, негидратированных ядер. Гидратация может происходит как во время, так и после остывания до поверхностных температур магматических расплавов. Считается, что более высокое содержание воды в перлите (до 5%) преимущественно связано с влиянием внешних факторов, а именно воздействием поверхностных и грунтовых вод [McPhie et al., 1993]. Перлиты могут быть макро- и микроскопических размеров. Гидратация первоначально затрагивает внешние поверхности лавовых потоков и куполов. В рассматриваемых образованиях перлитовые эффузивы могут слагать отдельные интервалы разреза.

Основываясь на особенностях формирования пород при вулканических извержениях и распределении разных типов вулканитов, в изучаемом комплексе пород выделены центральная (или внутренняя), переходная и внешняя зоны крупной вулканической постройки. Для центральной зоны вулканической постройки, отвечающей жерловой и верхней ее частям, свойственно развитие образований лавовых куполов и потоков, для внешней — переслаивание лавовых потоков с лавокластитами и туфами с преобладанием вулканокластических накоплений. Пример генетической интепретации пород

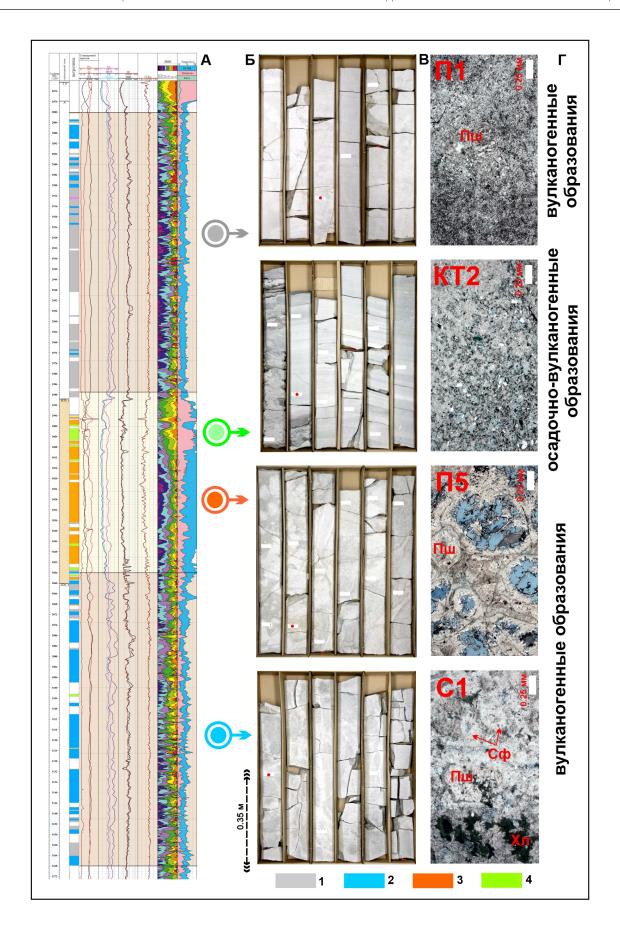
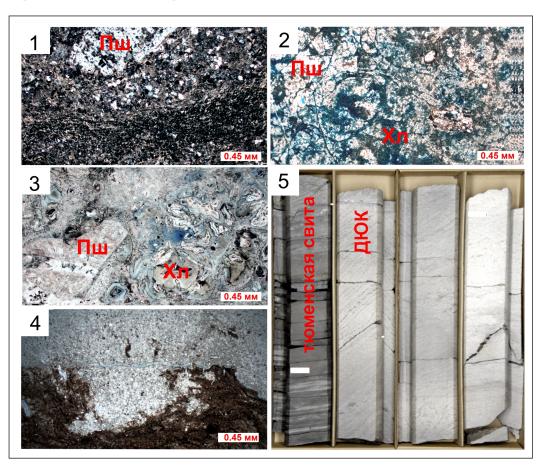


Рис. 5. Геолого-геофизическая характеристика разреза одной из изучаемых скважин (A) с фотографиями фрагментов керна в дневном свете (Б), шлифов (В) и указанием принадлежности пород к генетическим группам образований (Г). 1–4 – петротипы пород, установленные в результате макро- и микроскопических исследований: 1 – в основном эффузивы порфировые, массивные (П1), отдельные прослои с полосчатой и флюидальной текстурой (П2 и П3); 2 – эффузивы сферолитовые обычно без и редко с литофизами (С1,2); 3 – эффузивы перлитовые (П5), 4 – вулканокластиты (КЛ и КТ), в средней части разреза с преобладанием пирокластических разностей (КТ), отражающих периоды эксплозивных извержений. П1, КТ2, П5 и С1 – индексы установленных петротипов, указанные в таблице 1; Пш – полевые шпаты; Сф – сферолиты; Хл – хлорит. Красными точками на керне обозначены места отбора образцов пород, фотографии шлифов которых представлены на рисунке.

кровли ДЮК одной из изучаемых скважин, отвечающих центральной зоне древней вулканической постройки, приведен на рис. 5.


В ходе проведенного исследования наличие горизонтов кор выветривания (КВ), в отличие от мнения ряда авторов [Смирнова и ∂p ., 2024; Хромова и ∂p ., 2015], в изучаемом комплексе пород не было достоверно установлено. Согласно M. E. Смирновой c соавторами [2024], к продуктам кор выветривания, отличающимся наилучшими коллекторскими свойствами, относятся сильно измененные риодацитовые лавы c развитием вторичных кварца, глинистых минералов (включая хлорит), а также кальцита. Считается, что в кровле пермско-триасового вулканического комплекса, а также внутри толщи вулканитов по верхней поверхности покровов лав прослеживаются коры выветривания мощностью до 10–25 м, количество которых в последнем случае в отдельных разрезах скважин может доходить до 3–5 горизонтов.

Как известно, вторичные изменения могут быть связаны с действием самых различных процессов как с проявлением выветривания, так и с развитием наложенных процессов на глубине, например, с гидротермальной проработкой пород. Кварц, глинистые минералы и кальцит являются широко распространенными вторичными минералами, которые могут иметь разный генезис, в том числе формироваться при действии низкотемпературных (до 200-400°C) гидротермально-метасоматических процессов [Граменицкий, 2012]. Отличительной чертой кор выветривания является их зональное строение, закономерная смена пород с нарастающей снизу вверх интенсивностью вторичных изменений, что хорошо в них прослеживается [Страхов, 1963; Фролов, 1992]. Породы, находясь на земной поверхности всегда подвергаются воздействию экзогенных процессов с образованием выветрелой поверхности, но для образования полноценных кор выветривания и их серий требуется сочетание целого ряда факторов, действующих устойчиво на протяжении длительного времени. Выборочность развития горизонтов кор выветривания по одному типу пород с учетом всей специфики их образования (площадного распространения, длительности развития, стабильности необходимых условий) представляется маловероятным.

По имеющимся у нас данным среди рассматриваемых пород эпизодически встречаются вулканиты с признаками более заметной глинизации (преимущественно за счет развития слюдистых минералов), которые трудно сопоставить с полноценными продуктами кор выветривания, так как в них отчетливо прослеживались первичные признаки строения пород с сохранением основных составляющих компонентов, в том числе слабо устойчивых к вторичным преобразованиям (например, Пш) (рис. 6.1). В этих разностях выявлено наличие пониженных ФЕС, что не позволяет рассматривать их в качестве наиболее продуктивных пород-коллекторов. Среди них присутствуют обычно вулкано-кластические образования (туфы), а также эффузивы (преимущественно перлитовые). Подобные породы, если и рассматривать в качестве разностей с признаками выветривания, то только как находящиеся на начальных стадиях развития гипергенных процессов, при этом не исключая возможность влияния и других факторов глинизации.

В разрезе скважин выделяются вулканиты с интенсивной хлоритизацией (рис. 6.2, 3). Вторичные выделения хлорита в той или иной степени прослеживаются

по всему разрезу скважин. В породах с интенсивным выщелачиванием и возникновением вторичной пористости характерно формирование хлорита, в том числе в виде крустификационных корочек, часто сочетающихся в пустотах с вновь образованными серицитом и идиоморфными кристаллами альбита, что указывает на воздействие гидротермальных растворов, а не поверхностных процессов. Хлоритизация также может протекать и без формирования пустот выщелачивания. Наличие выделений хлорита, которые имеют широкое распространение, является характерной особенностью для рассматриваемых вулканитов. Хлоритам свойственна слабая устойчивость в зоне гипергенеза, что обусловлено во многом окислением Fe^{2+} октаэдрических сеток минерала [Шлыков, 2006]. Эта особенность хлоритов не позволяет их рассматривать в качестве породообразующего глинистого вещества кор выветривания, если, конечно, материнскими породами не являются хлоритовые сланцы.

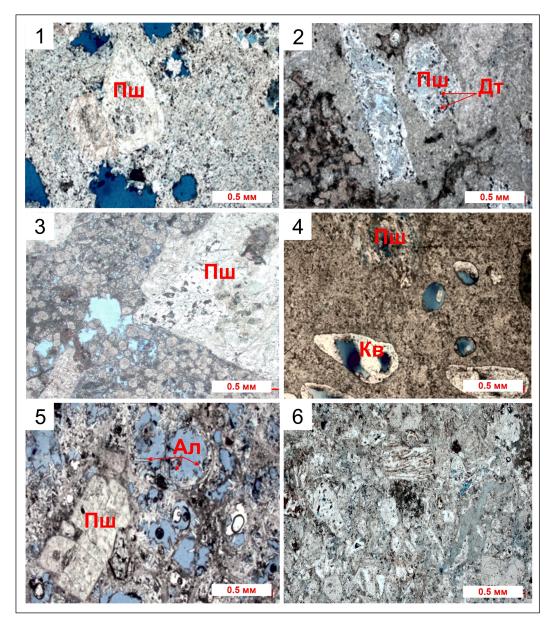
Рис. 6. Фотографии керна и шлифов изучаемых пород. 1 – вулканокластиты (KT) с глинизацией (Кп = 16%, Кпр = 0.08×10^{-3} мкм 2); 2 – эффузивы перлитовые с хлоритизацией; 3 – эффузивы перлитовые с хлоритизацией и признаками выщелачивания; 4 – контакт месоматических и осадочных образований; 5 – контакт с угловым несогласием пород кровли доюрского комплекса (ДЮК) и вышележащих отложений тюменской свиты в разрезе одной из скважин изучаемого месторождения. Фотографии шлифов сделаны в скрещенных (1, 2) николях и при одном (3, 4) николе.

По данным проведенных микроскопических и микрозондовых исследований, а также рентгеноструктурного анализа присутствие каолинита, являющегося типичным минералом кор выветривания, обычно формирующимся по кислым магматическим породам, в изучаемых образованиях не было выявлено.

Породы, которые были отнесены к метасоматитам (M), являются, скорее всего, продуктами преобразования первичного вещества в результате действия процессов, отличающихся от выветривания. Это подтверждается их локальным распространением

на определенном уровне в единичных скважинах, в основном однородным (монолитным) строением, преимущественно кремневым составом (кварца около 53–54%), переслаиванием с осадочными породами, отличающимися обычно наличием фоновых литогенетических вторичных изменений (рис. 6.4). Предполагается, что их формирование связано с преобразованием пирокластического материала, соприкоснувшегося с водной средой и попавшего в озерные условия. При этом последующее влияние гидротермальных процессов полностью также не исключается.

В разрезах скважин, вскрывающих контакт кровли рассматриваемых доюрских образований с вышележащими отложениями тюменской свиты, признаки развития коры выветривания не были обнаружены (рис. 6.5).


Приведенные данные касаются дискуссионных вопросов, рассматривающих особенности строения изучаемых толщ вулканитов. Наличие полноценных кор выветривания в пределах других разведочных площадей в кровле доюрского комплекса (ДЮК) подтверждено многочисленными исследованиями.

Характеристика коллекторских свойств

Вулканиты относятся к типам пород, которые рассматриваются в числе нетрадиционных коллекторов. Первичная пустотность в них может быть связана с наличием пузырьковых (везикулярных) пор, системы усадочных трещин вокруг сферолитов, межзерновых пор в вулканокластитах, а также с другими особенностями первичного строения этих пород [Wang and Zhou, 2020]. В результате проведенного исследования установлено, что коллекторские свойства изучаемых вулканитов в большей степени контролируются действием вторичных процессов. Для пород свойственны наложенные вторичные изменения, среди которых основными являются: (1) окремнение: развитие трещин, залеченных кварцем и участковое окремнение по зонам растворения, окварцевание (по перлитам, витрокластам и др.), развитие кварца в миндалинах; (2) карбонатизация (выделения сидерита и кальцита) участковая (обычно поверх фенокристаллов Пш) или по трещинам, (3) хлоритизация, (4) иллитизация, (5) альбитизация: развитие идиоморфных таблитчатых кристаллов альбита в пустотах растворения, местами в виде обильных крустификаций; (6) выщелачивание по трещинам, основной массе и по Пш, (7) трещиноватость. Среди сопутствующих вторичных выделений встречаются: флюорит, оксидные соединения титана (рутил или анатаз?), пирит. Наличие цеолитов в рассматриваемых породах не было выявлено.

Выщелачивание девитрифицированной стекловатой основной массы, фенокристаллов Пш и части миндалин, растворение вдоль стенок трещин, а также развитие вторичной трещиноватости являются основными вторичными процессами, контролирующими формирование фильтрационно-емкостных свойств изучаемых вулканитов (рис. 7).

В рассматриваемых образованиях встречаются одинаковые петротипы пород как без, так и с наличием признаков выщелачивания, что свидетельствует о неравномерном действии наложенных вторичных процессов, связанных, скорее всего, с проработкой гидротермальными растворами. Так, эффузивы порфировые с массивной или перлитовой текстурой могут быть представлены как почти непористыми, так и пористыми разностями (рис. 2.2, 6 и рис. 7.1, 2, 5). Выявление интервалов интенсивного выщелачивания и закономерностей их развития является важнейшей задачей. В рассматриваемых вулканитах наибольшая вторичная пористость при её наличии отмечается в эффузивах порфировых с перлитовой текстурой (П5), вулканокластитах (КЛ и КТ), а также в эффузивах порфировых с миндалекаменной текстурой (П4). В вулканитах с перлитовой структурой и массовым выщелачиванием перлитов отмечены высокие ФЕС: пористость может составлять до 20–28% при проницаемости до первых десятков мД (рис. 7.5). Лучшему проникновению выщелачивающих растворов способствует развитие в них перлитовых трещин.

Рис. 7. Микрофотографии петротипов изучаемых вулканитов кровли доюрского комплекса (ДЮК) месторождения в Елизаровском прогибе Западно-Сибирской плиты. 1 – эффузивы порфировые с массивной текстурой с выщелачиванием основной массы (П1) (Кп = 17,4%, Кпр = 0,15 × $10^{-3}\,$ мкм²); 2 – эффузивы порфировые с массивной текстурой с выщелачиванием полевых шпатов и образованием в пустотах вторичных выделений диоксида титана (П1) (Кп = 21,1%, Кпр = $0,45 \times 10^{-3}\,$ мкм²); 3 – эффузивы с вторичными пустотами выщелачивания между сферолитами (С1) (Кп = 7,1%, Кпр = $0,02 \times 10^{-3}\,$ мкм²); 4 – эффузивы с полным и частичным выщелачиванием миндалин, выполненных кварцем (П4) (Кп = 18,1%, Кпр = $0,30 \times 10^{-3}\,$ мкм²); 5 – эффузивы с интенсивным выщелачиванием перлитов и образованием вторичных идиоморфных кристаллов альбита в пустостах (П5) (Кп = 28,9%, Кпр = $0,95 \times 10^{-3}\,$ мкм²); 6 – вулканокластиты с признаками выщелачивания (КТ) (Кп = 15,3%, Кпр = $0,14 \times 10^{-3}\,$ мкм²). Пш – полевые шпаты, Кв – кварц в миндалинах, Ал – альбит, Дт – диоксид титана. Микрофотографии сделаны при одном николе.

Заключение

В результате проведенного исследования в рассматриваемой толще вулканитов выделено около 32 петротипов и литотипов пород, объединенных по вещественным, структурным и текстурным признакам в 7 основных групп. Установлено, что среди

изучаемых пород преобладают кислые эффузивы, отличающиеся достаточным разнообразным строением, и вулканокластиты. Вулканогенно-осадочные, осадочные породы и метасоматиты распространены в значительно меньшей степени.

По особенностям формирования с учетом первичных признаков пород проведена их генетическая типизация. Всего выявлено 5 генетических групп образований, которые подразделены на ряды с выделением генетических типов. Среди генетических типов установлены лавы, лавобрекчии/кластолавы, лавокластиты, туфы, озерные отложения с наличием пирокластического материала (туффиты), озерные отложения без пирокластики и метасоматиты. Образования первых четырех генетических типов в разрезе преобладают.

По особенностям распределения разных типов вулканитов в разрезе скважин по вертикали и латерали выявлена парагенетическая последовательность смены пород в зависимости от степени их раскаленности и времени остывания. Наиболее высокотемпературными и медленно остывающими являются эффузивы порфировые с массивной текстурой, характерные для жерловой фации вулкана и центральных частей лавовых потоков. Эта последовательность завершается образованием эффузивов афировых, перлитовых и миндалекаменных, а также вулканокластических накоплений. Генетическая типизация пород позволила определить диагностические признаки центральной (или внутренней), переходной и внешней фациальных зон крупной вулканической постройки. Наличие горизонтов полноценных кор выветривания (КВ) в изучаемом комплексе пород не было достоверно установлено.

Выявлено, что изучаемые вулканиты характеризуются разной степенью вторичной измененности. Наилучшими коллекторскими свойствами отличаются эффузивы с перлитовой текстурой (П5), вулканокластиты (КЛ и КТ) и эффузивы миндалекаменные (П4), претерпевшими выщелачивание и проработку гидротермальными растворами. Выщелачивание девитрифицированной стекловатой массы, фенокристаллов Пш и части миндалин, растворение вдоль стенок трещин, а также развитие вторичной трещиноватости относятся к основным вторичным процессам, контролирующим формирование фильтрационно-емкостных свойств исследуемых вулканитов. Важнейшей задачей является определение особенностей действия растворов на глубине, фильтрация которых обеспечивала в основном возникновение вторичной пустотности и формирование породколлекторов. Вулканитам с улучшенными коллекторскими свойствами характерны значения пористости до 25–28% и проницаемости до первых десятков мД.

Благодарности. Авторы выражают искреннюю благодарность В. Л. Косорукову, А. В. Грачевой и В. О. Япаскурту за участие в проведении лабораторных исследований, данные которых позволили обосновать полученные результаты высокоточными методами исследований. Работа выполнена в рамках государственного задания Геофизического центра РАН, утвержденного Минобрнауки России (№ 075-00439-25-01).

Список литературы

Булынникова А. А., Брадучан Ю. В., Киприянова Ф. В. и др. Стратиграфо-палеонтологическая основа детальной корреляции нефтегазоносных отложений Западно-Сибирской низменности. — Тюмень : ЗапСибНИГНИ, 1972. — 226 с.

Граменицкий Е. Н. Петрология метасоматических пород. — Москва : Инфра-М, 2012. — 20 с.

Емельяненко П. Ф. и Яковлева Е. Б. Петрография магматических и метаморфических пород. — Москва : МГУ, 1985.-248 с.

Конторович А. Э., Нестеров И. И., Салманов Ф. К. и др. Геология нефти и газа Западной Сибири. — Москва : Недра, 1975.-680 с.

Малеев Е. Ф. Вулканиты. Справочник. — Москва : Недра, 1980. - 240 с.

Наседкин В. В. Петрогенезис кислых вулканитов. — Москва : Наука, 1975. - 206 с.

Немова В. Д., Ростовцева Ю. В., Бажукова Т. А. и др. Литогенетическая классификация как основа изучения сложнопостроенных вулканогенно-осадочных пород на примере отложений доюрского комплекса Западной

- Сибири // Осадочные Породы 2024. Москва : MAKC Пресс, 2024. С. 84—86. https://doi.org/10.29003/m4304.978-5-317-07292-6.
- Пучков В. Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа : ДизайнПресс, 2010. 280 с. EDN: SMDNVH.
- Смирнов О. А., Лукашов А. В., Бородкин В. Н. и др. Выделение перспективных зон в доюрском комплексе Средне-Назымского месторождения Западной Сибири на основе комплексирования геолого-геофизических данных // Нефтегазовая геология. Теория и практика. — 2022. — Т. 17, № 3. — С. 1—16. — https://doi.org/10.17353/2070-5379/28 2022.
- Смирнова М. Е., Панченко И. В., Куликов П. Ю. и др. Строение, петротипы и коллекторские свойства измененных пермско-триасовых риодацитов в грабенах Фроловской мегавпадины Западной Сибири // Литология и полезные ископаемые. -2024. -№ 2. С. 245–276. https://doi.org/10.31857/S0024497X24020065.
- Страхов Н. М. Типы литогенеза и их эволюция в истории Земли. Москва : Научно-техническое издательство литературы по геологии и охране недр, 1963.-534 с.
- Сурков В. С. и Жеро О. Г. Фундамент и развитие платформенного чехла Западно-Сибирской плиты. Москва : Недра, 1981. 143 с.
- Тектоническая карта центральной части Западно-Сибирской плиты / под ред. В. И. Шпильмана, Н. И. Змановского и Л. Л. Подсосовой. Тюмень : АУ «НАЦ РН им. В.И. Шпильмана», 1998.
- Фролов В. Т. Генетическая типизация морских отложений. Москва : МГУ, 1984. 222 с.
- Фролов В. Т. Литология. Кн. 1. Москва : МГУ, 1992. 336 с.
- Фролов В. Т. Литология. Кн. 3. Москва : МГУ, 1995. 352 с.
- Хромова И. Ю., Кунин К. Н., Кащеев Д. Е. и др. Создание модели продуктивности отложений доюрского комплекса на одном из месторождений Западной Сибири // Российская нефтегазовая техническая конференция SPE. Москва : Society of Petroleum Engineers, 2015. С. 1—17. https://doi.org/10.2118/176622-ru.
- Шадрина С. В. Состав, строение, возраст пород доюрского основания северо-восточного обрамления Красноленинского свода // Геология нефти и газа. 2018. № 4. С. 27—33. https://doi.org/10.31087/0016-7894-2018-4-27-33. EDN: MBFEYX.
- Шеин В. С. Геология и нефтегазоносность России. Москва : ВНИГНИ, 2006. 776 с. EDN: QKFXTB.
- Шлыков В. Г. Рентгеновский анализ минерального состава дисперсных грунтов. Москва : ГЕОС, 2006. 176 с. Шмаков В. Д., Касков Н. Р., Бакулин А. А. и др. Новые данные о геологическом строении и продуктивности доюрского комплекса Средне-Назымского месторождения // Георесурсы. 2023. Т. 25, № 3. С. 111—118. https://doi.org/10.18599/grs.2023.3.14.
- Lofgren G. Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass // Geological Society of America Bulletin. 1971. Vol. 82, no. 1. P. 111–124. https://doi.org/10.1130/0016-7606(1971)82[111:epdtin]2.0.co;2.
- McPhie J., Doyle M. and Allen R. Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit, Exploration Studies, University of Tasmania, 1993. 198 p.
- Steven T. A. and Lipman P. W. Calderas of the San Juan volcanic field, southwestern Colorado. US Geological Survey, 1976. 35 p. https://doi.org/10.3133/pp958.
- Wang J. and Zhou Y. Study on volcanic reservoir characteristics of Yingcheng Formation in Xudong area of Xujiaweizi fault depression // E3S Web of Conferences 194. 2020. https://doi.org/10.1051/e3sconf/202019401038.

Special Issue: "To the 80th Anniversary of the 'Sedimentary Rocks' Section of the Moscow Society of Naturalists (MOIP)"

PETROGENETIC TYPING OF VOLCANICS FROM THE TOP OF THE OIL-BEARING PRE-JURASSIC COMPLEX IN THE ELIZAROVSKY TROUGH OF THE WEST SIBERIAN PLATE

Yu. V. Rostovtseva^{1**}, V. D. Nemova^{2,3}, N. V. Nemchenko⁴, S. V. Tomasenko⁴, and V. V. Pustylnikova⁴

The results of petrogenetic typing of acidic volcanic rocks (rhyolites and dacites) of the top of the oil-bearing pre-Jurassic complex of the field located in the Elizarovsky trough of the West Siberian plate are considered. These volcanic deposits have a complex structure and, according to the results of well sampling, are characterised by extremely high variability of rock productivity, irregular watering, and, probably, the presence of several levels of water-oil contacts. The study of core material (about 850 linear m) and rocks in thin sections (1320 samples), as well as the application of high-precision research methods (e.g. microprobe and X-ray phase analyses) made it possible to identify 32 types of rocks based on composition, textural and structural features, which were united into 7 groups of similar deposits. As a result of genetic interpretation of the rock structure, the presence of lavas, lavobreccia/clastolavas, lavoclastites, tuffs, lake sediments without and with pyroclastics, and metasomatites was established. The formations of the first four genetic types predominate in this rock complex. In the studied volcanics no reliable signs of the development of weathering horizons were not revealed. The volcanic rocks are characterised by different degrees of secondary transformation, in which the formation of improved reservoir properties was mainly due to leaching, which occurred under the action of solutions at depth, as well as the appearance of fracturing. The best reservoir properties are characterised mainly by effusives with pearlite texture, volcaniclastics and amygdaloid effusives. Volcanic rocks with improved filtration-capacity properties are characterised by porosity values up to 25-28% and permeability values up to the first tens of mD.

Keywords: volcanics, petrotypes, genotypes, reservoir properties, pre-Jurassic complex, West Siberian Plate.

Citation: Rostovtseva Yu. V., Nemova V. D., Nemchenko N. V., Tomasenko S. V., and Pustylnikova V. V. (2025), Petrogenetic typing of volcanics from the top of the oil-bearing pre-Jurassic complex in the Elizarovsky trough of the West Siberian Plate, *Russian Journal of Earth Sciences*, 25, ES4013, https://doi.org/10.2205/2025ES001042, EDN: DMLDTW

RESEARCH ARTICLE

Received: June 2, 2025 Accepted: July 13, 2025 Published: September 30, 2025

© 2025. The Authors.

References

Bulynnikova A. A., Braduchan Yu. V., Kipriyanova F. V., et al. Stratigraphic-paleontological basis for detailed correlation of oil and gas deposits of the West Siberian Lowland. — Tyumen: ZapSibNIGNI, 1972. — 226 p. — (In Russian). Emelyanenko P. F. and Yakovleva E. B. Petrography of igneous and metamorphic rocks. — Moscow: MSU, 1985. — 248 p. — (In Russian).

¹Geophysical Centre of the Russian Academy of Sciences (GC RAS), Moscow, Russia

 $^{^2}$ LUKOIL-Engineering, Moscow, Russia

 $^{^3{\}rm Gubkin}$ University, Moscow, Russia

⁴Aprelevka Branch of All-Russian Research Geological Oil Institute (VNIGNI), Aprelevka, Moscow Region, Russia

^{**}Correspondence to: Yuliana Rostovtseva, yu.rostovtseva@gcras.ru

- Frolov V. T. Genetic typing of marine sediments. Moscow: MSU, 1984. 222 p. (In Russian).
- Frolov V. T. Lithology. Book 1. Moscow: MSU, 1992. 336 p. (In Russian).
- Frolov V. T. Lithology. Book 3. Moscow: MSU, 1995. 352 p. (In Russian).
- Gramenitsky E. N. Petrology of metasomatic rocks. Moscow: Infra-M, 2012. 20 p. (In Russian).
- Khromova I. Yu., Kunin K. N., Kashcheev D. E., et al. Exploration and Oil Discovery in Pre-Jurassic Section of a Field in Western Siberia A New Idea for the Mature Basin (Russian) // SPE Russian Petroleum Technology Conference. Moscow: Society of Petroleum Engineers, 2015. P. 1–17. https://doi.org/10.2118/176622-ru. (In Russian).
- Kontorovich A. E., Nesterov I. I., Salmanov F. K., et al. Geology of oil and gas in Western Siberia. Moscow: Nedra, 1975. 680 p. (In Russian).
- $\label{logical bounds} \mbox{Lofgren G. Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass // Geological Society of America Bulletin. 1971. Vol. 82, no. 1. P. 111–124. <math display="block"> \mbox{https://doi.org/10.1130/0016-7606(1971)82[111:epdtin]2.0.co;2. }$
- Maleev E. F. Volcanites. Handbook. Moscow: Nedra, 1980. 240 p. (In Russian).
- McPhie J., Doyle M. and Allen R. Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit, Exploration Studies, University of Tasmania, 1993. 198 p.
- Nasedkin V. V. Petrogenesis of acid volcanics. Moscow: Nauka, 1975. 206 p. (In Russian).
- Nemova V. D., Rostovtseva Yu. V., Bazhukova T. A., et al. Lithogenetic classification as a basis for studying complex volcanogenic-sedimentary rocks using the example of deposits of the pre-Jurassic complex of Western Siberia // Sedimentary rocks 2022. Moscow: LCC MAKS Press, 2024. P. 84–86. https://doi.org/10.29003/m4304.978-5-317-07292-6. (In Russian).
- Puchkov V. N. Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny). Ufa: DesignPress, 2010. 280 p. EDN: SMDNVH; (in Russian).
- Shadrina S. V. Composition, structure, and age of the pre-Jurassic basement rocks in the northeastern framing of the Krasnoleninsky anticlinal fold // Oil and gas geology. 2018. No. 4. P. 27–33. https://doi.org/10.31087/0016-7894-2018-4-27-33. EDN: MBFEYX; (in Russian).
- Shein B. C. Geology and oil and gas potential of Russia. Moscow: VNIGNI, 2006. 776 p. EDN: QKFXTB; (in Russian).
- Shlykov V. G. X-ray analysis of the mineral composition of dispersed soils. Moscow : GEOS, 2006. 176 p. (In Russian).
- Shmakov V. D., Kaskov N. R., Bakulin A. A., et al. Geological structure and reservoir productivity of Pre-Jurassic basement rocks of the Sredne-Nazymskoye oil field (Western Siberia): new data // Georesursy. 2023. Vol. 25, no. 3. P. 111–118. https://doi.org/10.18599/grs.2023.3.14. (In Russian).
- Smirnov O. A., Lukashov A. V., Borodkin V. N., et al. Promising Zones Identification in the Pre-Jurassic Section of the Sredne-Nazym Field in Western Siberia on the Basis of Compilation of Geological and Geophysical Data // Neftegazovaya Geologiya: Teoriya I Praktika. 2022. Vol. 17, no. 3. P. 1–16. https://doi.org/10.17353/2070-5379/28_2022. (In Russian).
- Smirnova M. E., Panchenko I. V., Kulikov P. Yu., et al. Structure, Rock Types, and Reservoir Properties of Altered Permian-Triassic Rhyodacites in Grabens of the Frolov Megadepression in Western Siberia // Lithology and Mineral Resources. 2024. Vol. 59, no. 2. P. 206–233. https://doi.org/10.1134/S0024490223700438.
- Steven T. A. and Lipman P. W. Calderas of the San Juan volcanic field, southwestern Colorado. US Geological Survey, 1976. 35 p. https://doi.org/10.3133/pp958.
- Strakhov N. M. Types of lithogenesis and their evolution in the history of the Earth. Moscow: Scientific, technical publishing house of literature on geology, mineral resources protection, 1963. 534 p. (In Russian).
- Surkov V. S. and Zhero O. G. Foundation and development of the platform cover of the West Siberian plate. Moscow : Nedra, 1981. 143 p. (In Russian).
- Tectonic map of the central part of the West Siberian plate / ed. by V. I. Shpilman, N. I. Zmanovsky and L. L. Podsosova. Tyumen: AU "NAC RN named after V. I. Shpilman", 1998. (In Russian).
- Wang J. and Zhou Y. Study on volcanic reservoir characteristics of Yingcheng Formation in Xudong area of Xujiaweizi fault depression // E3S Web of Conferences 194. 2020. https://doi.org/10.1051/e3sconf/202019401038.