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Abstract: The Verkhnekamsk potassium-magnesium salt deposit (VKSD) is one of the largest in
the world. The primary challenge in underground salt mining is maintaining the integrity of the
groundwater protective layer, which separates the mined seams from aquifers. In this context, the
Verkhnekamsk deposit is mined using a chamber system room-and-pillar method, ensuring the
stability of the protective layer through inter-chamber pillars. This paper presents the results of a pre-
liminary analysis of the geological and mining conditions in one of the mines of the Verkhnekamsk
deposit. The procedure for forming the initial data set is discussed. Test calculations based on
a limited data set were performed, demonstrating the potential of combining artificial neural net-
work algorithms and discrete mathematical analysis. The results achieved on the formed dataset
successfully identified hazard classes. Thus, it can be concluded that this technology is fundamen-
tally effective for assessing the risk of groundwater protective layer failure. The proposed approach
establishes links between phenomena, their associated risks, and the deformations of underground

workings and the Earth's surface, enabling proactive measures to protect mines from flooding.
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1. Introduction

The Verkhnekamsk potassium-magnesium salt deposit (VKSD) is one of the largest
salt deposits in the world. The explored thickness of the potassium-magnesium salts
extends over an area of 135 by 40 kilometers. The primary challenge in underground salt
mining is maintaining the integrity of the rock layer located between the roof of the upper
mined seam and the base of the aquifer, which is referred to as the groundwater protective
layer (GWPL). A breach of the groundwater protective layer can result in underground
water ingress into the mine workings, dissolution of salt rocks, and the collapse of the
mine, leading to significant economic and environmental damage. Mining operations at
VKSD, as well as most potassium-magnesium salt deposits, are conducted using a chamber
system room-and-pillar method, leaving inter-chamber pillars to ensure the stability of the
groundwater protective layer and to protect structures on the surface. However, during
ore extraction, these pillars undergo deformation, resulting in the formation of subsidence
troughs on the surface. All of this indicates the presence of anthropogenic stress on the
layers of the groundwater protective layer and the potential risk of its integrity being
compromised. For instance, out of the seven mines developed within VKSD, two (BKPRU-3

Russ. J. Earth. Sci. 2025, 25, ES4004, EDN: SMDOXS, https://doi.org/10.2205/2025es001015 https://rjes.ru/


https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://rjes.ru
https://rjes.ru/
https://orcid.org/0009-0005-0785-4986
https://orcid.org/0000-0003-2737-6166
https://orcid.org/0000-0003-3408-9309
https://orcid.org/0009-0008-5139-8086
https://orcid.org/0009-0003-5273-9931
https://orcid.org/0000-0001-7486-6104
https://orcid.org/0000-0003-3461-6383
https://orcid.org/0000-0001-6435-464X
https://elibrary.ru/SMDOXS
https://doi.org/10.2205/2025es001015
https://elibrary.ru/SMDOXS
https://doi.org/10.2205/2025es001015
https://rjes.ru/

ON AN APPROACH TO ZONING Risks OF GROUNDWATER PROTECTIVE LAYER FAILURE... Losev ET AL.

and BKPRU-1) have been flooded due to water breakthroughs in 1986 and 2006. The
hazardous consequences of mine flooding also include surface subsidence, which occurs
during and after the breakthrough of water into the mine workings.

Studies on the safety of mining operations at the VKSD indicate that the methods
for protecting the groundwater protective layer recommended by current regulatory doc-
uments cannot be effectively implemented in the presence of “anomalous zones” within
the groundwater protective layer. These are zones where geological characteristics differ
significantly from those of adjacent areas of the rock mass. The work by Zubov et al. [2019)]
emphasizes that the most hazardous anomalous zones are those characterized by changes
in the structure, composition, and strength properties of the groundwater protective layer
rocks, including zones located above the edges of the mined-out areas. The challenge of
ensuring safe mining conditions beneath the groundwater protective layer is exacerbated
by the lack of complete and reliable data on the size and location of such zones during the
planning stage. Several studies [Owoseni et al., 2013] highlight the critical role of various
mathematical methods for analyzing geospatial data in identifying such zones.

The assessment of the impact of mining operations on the groundwater protective
layer is based on the observation that water-conducting fractures within the layer emerge
due to the development of tensile deformations and shear stresses, which are typically
concentrated at the edges of subsidence troughs [Baryakh, Gubanova, 2019]. This is a dy-
namically evolving process associated with the progression of mining fronts. Areas with
high gradients of geological and geophysical data and their spatial-temporal distribu-
tion characteristics, such as linear features, offsets, and others, can serve as indicators of
hazardous deformations and the risk of through fractures forming in the groundwater
protective layer. This is analogous to the maximum subsidence values and the length of the
edge part of the subsidence trough [Baryakh, Samodelkina, 2018].

Studies [Baryakh, Samodelkina, 2012; Kudryashov et al., 2004] note that the prerequi-
sites for surface subsidence following complete flooding of a mine include a combination of
the following factors: a high gradient of surface subsidence (exceeding 3-4%), a weakened
zone in the suprasalt layer (4—6 times reduced in strength and deformation properties),
and the presence of a dissolution cavity capable of accommodating the entire volume of
collapsed rock. It follows that assessing the risk of groundwater protective layer failure
requires considering two groups of factors: the characteristics of structurally weakened
zones (areas with increased fracturing and anisotropy, rocks with low strength properties,
soluble rocks, etc.) and mining parameters along with the response of the groundwater pro-
tective layer (high-gradient zones of displacement, deformation, and stress concentration).
Identifying such features based on experimental data is characterized by an unknown,
multidimensional, nonlinear relationship between input and output variables.

The risks associated with deposits, including salt deposits, have been the focus of
extensive research. For instance, in [Baryakh et al., 2021], tests on large salt rock samples
were conducted to analyze the stability of inter-chamber pillars and assess the critical
rate of their transverse deformation. Another study [Baryakh, Tenison, 2021] emphasizes
that one of the most critical tasks in geomechanical support of mining operations is
the accurate assessment of safe mining conditions for the groundwater protective layer.
Recommendations include adopting the ratio of maximum subsidence to mining depth,
which is directly proportional to the slope of the Earth's surface, as a generalized criterion
for defining safe mining conditions for the groundwater protective layer.

Thus, the likelihood of crack formation in the mined rock mass is associated with the
presence of “anomalous” zones of two genetic types:

1.  Structurally weakened areas that originally existed in the geological section (zones
with increased fracturing and anisotropy, rocks with low strength properties, soluble
rocks, etc.).

2. Zones of anthropogenic deformation and displacement that serve as triggers for the
formation of water-conducting channels, for example, in the edge parts of subsidence
troughs.
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In Earth sciences, graph theory is widely used as a method of systems analysis in
geoinformatics, geology, quantitative geography, and landscape ecology [Phillips et al.,
2015; Zhang et al., 2020]. Several factors make graph theory particularly relevant to Earth
sciences: the ability to work with large datasets (Big Data), its focus on spatial flows and
interactions, and the growing attention to agent-based state models. Graph theory provides
tools that facilitate the quantitative assessment of the properties and state of the studied
natural-technical system.

One of the most powerful groups of data systems analysis methods in Earth sciences is
machine learning methods and algorithms [Kolmogorov, 1957; Pedregosa et al., 2012]. These
are used to assess accident risks by jointly studying factors influencing the probability
of occurrence, factors of environmental, population, and infrastructure vulnerability, as
well as internal and external risk factors [Araujo et al., 2011; Ibrahim, Bennett, 2014].
Algorithms such as Naive Bayes, Support Vector Machine, k-Nearest Neighbors, Decision
Tree Bagging Random Forest, and Discriminant Analysis are utilized. The nonlinear nature
of risk problems, combined with the high number of variables, justifies the use of machine
learning methods to assess risk levels.

Thus, the purpose of this study is to present the results of a preliminary analysis of
data from the Verkhnekamsk potassium-magnesium salt deposit using a neural network
approach and the methodology of discrete mathematical analysis. Numerous examples of
accidents involving water inflows into mines worldwide demonstrate that the improvement
of mining methods does not entirely eliminate the possibility of surface water break-
throughs. In this regard, the development of effective methods for assessing hazards and
the degree of risk of groundwater protective layer failure, along with the adoption of
preventive mining measures based on these assessments, is a pressing issue for the VKSD
and for salt deposits in general.

2. Materials and Methods
2.1. Methodology of Discrete Mathematical Analysis

The theoretical and practical aspects of Discrete Mathematical Analysis (DMA) for
spatial data evaluation of the geodynamic hazards of structural-tectonic blocks are most
comprehensively presented in the works of the Geophysical Center of the RAS [Agayan
et al., 2022; Guishiani et al., 2019a, 2021, 2019b]. Below, we outline their key principles.
The identification of anomalous instability values within a set of geological and geophysical
data fields is based on ranking the nodes of a finite two-dimensional grid to select the
worst nodes. The article [Gvishiani et al., 2021] introduces algorithms that account for
various expert perspectives on specified functions, their properties, and dynamics, as well
as on which nodes should be considered the “best”. The study employs the language
of fuzzy sets and fuzzy logic, which offers significant advantages over classical sets and
Boolean logic for conveying different expert interpretations of properties and processes in
the geological environment. We apply this algorithm to address our zoning tasks. Assume
that on the coordinate plane R?(x;, x,), there is a region IT = {a < x; < b;c < x, < d}. For this
region, a set of geological and geophysical fields F consisting of mmm datasets is defined
(in the form of digital maps of various parameters — geographical, geological, geophysical,
geodynamic, economic, and others). The task is to evaluate the stability of the region Il
based on the set of characteristics F:

F={fi,....fu}
firll >R i=1,...,m

or divide the region IT into relatively unstable (conditionally hazardous) and stable (con-
ditionally safe) elements, i.e., effectively perform geodynamic zoning. A regular grid
W = W(hy, h,;) with nodes w is defined within the region IT.
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Next, on the grid W, it is necessary to analyze the spatial distribution of the system of
functions F in the vicinity of the node w. For this purpose, a fuzzy measure of activity p,
ranging from 0 to 1, is defined according to the rules described below.

Step 1. Calculation of the Dynamic Indicator

Each parameter f from the set F is a distribution function on the grid W. For each
parameter f, a dynamic indicator Dy can be determined, which represents the functional
characteristic of the measurement f. The value Df(w) is interpreted as a quantitative
assessment of the behavior of the function f at the node w € W, calculated according to
specified rules. In terms of data analysis, the dynamic indicator D¢(w) serves as a feature.

Step 2. Calculation of the Activity Measure of the Dynamic Indicator

For each dynamic indicator Dy, an activity measure (anomaly measure) uDy is de-
termined within the range from 0 to 1. This measure reflects the degree of expression
of the property f at the node w, as defined by the indicator Dy. The activity measure
uDs is calculated from the dynamic indicator Dy within the framework of the discrete
mathematical analysis methodology. The transition Dy — uDy transforms the analysis of
the measurement f into the language of fuzzy logic: the activity measures uDy for different
dynamic indicators Dy are fuzzy structures on the grid W and can be combined in any
configurations and quantities using fuzzy logic operations and averaging.

Step 3. Calculation of the Integral Activity Measure pg

At the final step of the algorithm, all activity measures uDy are combined into a single
integral indicator pyp. The combination formula is the arithmetic mean of all activity
measures uDy. Depending on the research objective, weighted coefficients for the activity
measures or alternative combination formulas may be applied. To represent the measure
of geodynamic safety, a value inverse to the integral activity measure is used:

Sp=1-pp.

The transformation F — pg converts vector analysis of the system of functions F into
scalar analysis of the resulting anomaly measure p, which, in decision-making theory,
reduces a multicriteria problem to a scalar selection of a utility function. In terms of
geodynamic zoning, the criteria for evaluating the value of Sg based on the set of features
F are defined in Table 1. This ranking approach is appropriate, as an integral measure
expressed in the range from 0 to 1 implies that conditions Sg < 0.25 and Sg > 0.75 indicate
stability or instability, respectively. Values within the range 0.25 to 0.75 suggest uncertainty
and the need for further research.

Table 1. Ranking of the integral measure of geodynamic safety Sg

Geodynamic safety measure Node (structural block), Sg
Hazardous <0.25
Neutral €(0.25;0.75)
Safe >0.75
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Thus, the algorithm includes the following parameters: 1) “Dynamic Indicator” — each
dynamic indicator is interpreted as a quantitative assessment of a specific property of the
initial data. 2) “Activity Measure of the Dynamic Indicator” — the measure reflects the
degree of activity of the dynamic indicator on a scale from 0 to 1. 3) “Safety Measure of the
Dynamic Indicator” — the value inverse to the activity measure of the dynamic indicator.
4) “Integral Safety Measure” — represents the combination of the safety measures of the
dynamic indicators.

2.2. Formation of GIS-Oriented Database

To construct an integral safety measure applied to the problem of zoning sections
of the VKSD mining fields by the degree of risk of freshwater breakthrough into mine
workings, aimed at refining assessments of the risk of groundwater protective layer integrity
disruption, three groups of initial data, combined into a GIS-oriented database, are used:

1. Natural characteristics (anomalies in the structure of the groundwater protective
layer, depth of mining operations, effective thickness of the groundwater protective
layer, physical and mechanical properties, etc.) of the geological environment and
salt strata.

2. Mining-technological characteristics (number of mined seams, parameters of the
mining system, extracted thickness, etc.).

3. Instrumental observation data characterizing the response of the rock mass to mining
operations (convergence of mining chambers, surface deformation, collapse of the
inter-seam technological layer, geophysical data, etc.).

To ensure the application of data analysis methods, it is necessary to create a consoli-
dated data table by recording all available parameter values into a single spatial data layer.
For this purpose, data layers were merged by transferring the attributes of the layers into
a unified temporary data layer. Additionally, non-spatial tabular data were included in
the new data layer by correlating the numbers of sections and blocks. All object features,
divided into groups, were converted into numerical classes and correlated with each other.

The initial mining-technological data were supplemented with surface relief analysis
data characterizing the features of the relief Lllze(w), leze(w), |[Vgel(w). The first two indica-
tors — Lllze' leze, describe geomorphological variability, while the third, |Vg,|, represents the
relief gradient. Indicators L}, L%, characterize the dissection of coordinate sections of the
relief at the internal node w, both in absolute values and angular measurements [Agayan
et al., 2022]. The resulting indicators are transformed into vector lines (using standard
edge detection algorithms such as the Canny method and Hough transform), from which
linear densities are then calculated to obtain continuously distributed parameter fields
(Figure 1).

Modern tectonic movement areas are reflected not so much in height fields, curvature,
and slope steepness, but in the density and depth of dissection. The terrain ruggedness
index (TRI) [Migon, Michniewicz, 2017] — a measure of vertical dissection in a given neigh-
borhood - is considered the most appropriate for calculating dissection parameters while
preserving the geomorphological meaning of the term (Figure 1a). For indicators L} (w),
leze(w), |[Vgel(w) and TRI, the arithmetic means and range (the difference between the
maximum and minimum values within a section) were calculated. For subsidence data,
arithmetic mean values were computed.

As aresult, a single vector data layer was created, encompassing all available initial
data (257 attribute fields and 1,665 data rows).

3. Results

As the initial data for modeling, 22 attributes were selected from 257 attribute fields
based on the highest data completeness in the table and their role as the most generalized
features. The selected features include groups of natural anomalies, mining-technological
parameters, and instrumental observation data. Data rows with missing attribute values
were removed. As a result, a dataset containing 1,615 rows was created. In the current
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Figure 1. Linear Densities of Relief Indicators. a — terrain ruggedness Index; b — relief gradient
|[VRe(w)]; ¢ — cosine transformation, relief measure yL]lQ .(w); d — cosine transformation, relief measure
uLE (w).

test calculations, surface subsidence values were used as the hazard indicator. Correlation
matrices and thresholds for the strength of correlation were calculated for the computed
dynamic indicators Dy and their activity measures uDy. The matrix includes Pearson's
pairwise correlation coefficient. The lower threshold for the presence of a correlation was
determined using Student's criterion (Equation 1), and the intervals for correlation strength
were defined according to Equation 2:

t
r=—F— (1)
VtZ4n-2
1—7’0
Tint = —5— (2)

Thus, for the dataset used (with 1,615 rows for each indicator and a significance level
of 0.95), the intervals for the strength of correlation were defined as follows:

¢ Weak correlation: 0.049-0.366;
e  Middle correlation: 0.366-0.683;
*  Strong correlation: 0.683-1.

In Figure 2, the calculated correlation matrix for 22 dynamic indicators uDy is pre-
sented. The strength of the correlation is shown using a discrete color scale. Out of 231
correlation values in the initial data, 200 exhibit weak correlation. This is a positive result
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from a data analysis perspective, as features should not be collinear; otherwise, high data
dispersion reduces the generalization ability of the integral measure of geodynamic safety
Sp(w). The parameters of geological anomalies in group 2-4 show strong correlation due
to multiple overlaps in the data. Additionally, group 2—4 has a moderate correlation with
the parameter of roof depth. A moderate correlation is observed in the group of indicators
related to backfill and the mining method for group 9-11. Similarly, a moderate strength
of correlation exists between the TRI index and the relief indicator ,uLllge(w). The surface
subsidence parameters within group 20-22 show strong correlation. Meanwhile, all other
features demonstrate low correlation with surface subsidence, indicating an a priori lack
of direct relationships between the chosen “hazard” criterion and the considered features.
Subsequently, calculations were performed based on two approaches: 1 - DMA approach,
involving the calculation of activity measures for the dynamic indicators uDy and the
integral measure of geodynamic safety; 2 — neural network approach, based on training the
algorithm using the created data sample.

2 [ 3

Correlation

(0.10/0.20[-0.06[-0.21]0.26] 0.02 [0.00 0.05| 0.04 |0.03|0.06]-0.03]-0.05 0.08|-0.05|-0.09 -~
0.00{0.09 [0.09[-0.08] 0.27 [-0.12|-0.10/-0.06|-0.02[ 0.08 |0.05|-0.11]0.01 | 0.00| 0.02|-0.01 coefficient
[0.01]0.05]-0.11|-0.11]0.29]-0.10[-0.09]-0.06|-0.03| 0.08 | 0.03|-0.11[ 0.00 [-0.04]-0.03]-0.06

[0.010.14]-0.14]-0.11| 0.31|-0.13]-0.10]-0.09]-0.05] 0.2 [0.09 | 0.10] 0.0 [ 0.07 | 0.08 | 0.06 - 1
[0.26]0.18 |-0.37[-0.24] 0.45|-022[-0.19[0.18/-0.09] 0.17 | 015 |-0.16| 0.05 | 0.10 | 0.10 | 0.10 0.84

0.69
0.54
0.37

0.18

0

-0.18
-0.37
-0.54
-0.69
-0.84

-

Figure 2. Correlation matrix of the compiled data table. 1 — mined seam; 2, 3, 4 — types of geological

anomalies; 5 — roof depth; 6 — chamber width; 7 — chamber length; 8 — mining-technical load
coefficient; 9 — mining-technical axial spacing coefficient; 10 — type of backfill for the mined-out
space; 11 — chamber mining method; 12 — mean value of the TRI index within the section; 13 — range
of TRI index values within the section; 14 — mean relief gradient |Vg.(w)| within the section; 15 — relief
gradient range |Vg.(w)| within the section; 16 — mean value of the cosine transformation within the
section, relief measure yL}{e(w); 17 — range of cosine transformation values within the section, relief
measure yLllee(w); 18 — mean value of the cosine transformation within the section, relief measure
yLIZQe(w); 19 - range of cosine transformation values within the section, relief measure yLIZQe(w);
20 — mean value of surface subsidence within the section; 21 — minimum surface subsidence value
within the section; 22 — maximum surface subsidence value within the section.

Based on the calculation of activity measures for the dynamic indicators uDy of
the features, the integral measure of geodynamic safety Sp was computed using DMA
algorithms. In this case, two variants of the measures were calculated: one based on
all the data (features 1-22) (Figure 3) and another excluding surface subsidence data
(features 1-19) (Figure 4). In the case of DMA-zoning, a priori known mining-technological
and geological features of the sections were not used. However, the activity measures of
the dynamic indicators enable the identification of anomalous zones that correlate with
geological anomaly zones.

Test calculations based on a limited dataset demonstrate the potential for the combined
application of ANN algorithms and DMA. Despite the dataset's limitations, successful
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Figure 3. Geodynamic safety measure derived from all data (features 1-22, Figure 2).

results were achieved in recognizing hazard classes. This allows us to conclude that this
technology is fundamentally suitable for assessing the risk of groundwater protective layer
failure.

The further successful application of data analysis algorithms largely depends on the
careful and detailed preparation of the initial data. This primarily concerns the choice of the
“hazard” criterion. In the presented text, surface subsidence with arbitrary thresholds in
millimeters was chosen as such a criterion. However, for assessing the risk of groundwater
protective layer failure, a different indicator should be selected, such as section accident
rates or surface deformation of the sections. To improve prediction accuracy, particular
attention should be given to data collection and preparation, as well as to the geological
and geophysical properties of the rock mass.

Mining-technological features, such as the year sections were first developed, min-
ing technology, and backfill technology for mined-out spaces, show great potential for
application. Using such features allows for their consideration during mine planning and
enables variational hazard modeling, which helps determine optimal mining-technological
parameters for resource extraction.

DMA algorithms are well complemented by ANN algorithms. Neural networks can be
most effectively used for the discovery and synthesis of new recognition features and for
variational calculations. As a result, the developed system (algorithm and training dataset)
can be effectively trained on known data from already developed sections and applied to
new areas where mining operations have not yet commenced.

4. Conclusions

Systems analysis will make it possible to establish fundamental relationships between
observed phenomena, their associated hazards, and recorded deformations in mine work-
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Figure 4. Geodynamic safety measure derived from data excluding surface subsidence (features 1-19,
Figure 2).

ings and the Earth's surface. New methods and algorithms will enable the identification of
hazardous anomalies in the groundwater protective layer (zones of increased gradients,
linear zones, etc.), allowing for a more precise analysis of the relationship between the
morphological features of the distribution of geological and geophysical parameters in
the overlying strata, the geomechanical criteria for groundwater protective layer integrity
disruption, and instrumentally recorded deformations of the rock mass. Frequently, the
“anomalous” nature of such zones in failed stoping blocks with underground water in-
flows was identified only retrospectively, based on post-incident analysis. Ultimately, the
causes of accidents are often attributed to ineffective protective measures, suboptimal
design parameters recommended by regulatory documents, or omissions during geological
exploration activities.

This will enhance the efficiency of assessing the risk of groundwater protective layer
failure through the so-called emergent effect, achieved by integrating three critical compo-
nents into a unified system: observations of the impact of mining operations on the ground-
water protective layer, instrumental data on the state of the geological environment, and
modern methods for data processing, modeling, and interpretation. A system-analytical
method for assessing the risk or hazard of groundwater protective layer integrity disruption
will formalize both the process of identifying anomalous hazardous zones and improve the
reliability of risk assessment results. Consequently, it will also enhance the effectiveness of
technical and design solutions needed to prevent such failures. Using a system-hierarchical
approach to evaluate the geodynamic stability of salt rocks, the next step is to assess the
stability of mine chambers, workings, and inter-chamber pillars.

In addressing this issue, the systems approach serves, on the one hand, as a tool for
multifactor analysis of initial data and for the adequate formulation of scientific problems,
and on the other hand, as an effective way to solve them. It helps uncover fundamental
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relationships and derive new empirical dependencies between the state of inter-chamber
pillars and the groundwater protective layer and the parameters of mining operations,
verified by data from field geomechanical observations. Systems analysis of the interactions
between individual components of the natural-technogenic system (which the groundwater
protective layer itself constitutes) makes it possible to identify its properties associated
with the risk of underground water breakthroughs.
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