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Abstract: The downward continuation of an anomalous magnetic field is used for many applications
in geophysics. However, such a problem is ill-posed, so it does not have a unique and stable solution.
In this paper, we propose an artificial neural network architecture for the downward continuation of
the vertical component of an anomalous geomagnetic field measured in a plane at a given height. The
inverse problem is solved here by a direct method: the neural network is trained to reconstruct such
a distribution of the magnetic field Bdown, which after a stable upward continuation corresponds to
the measured field Bup. The performance of the neural network was demonstrated using the example
of an anomalous geomagnetic field obtained using the Enhanced Magnetic Model.
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1. Introduction
The downward continuation of the magnetic field is an important applied task, pri-

marily for general navigation and for directional drilling [Buchanan et al., 2013; Kaji et al.,
2019]. For example, during aeromagnetic surveying, the magnetic field is measured at a
given height above the Earth's surface, but for technical applications the magnetic field
must be known at the ground level and several kilometers deeper.

The geometry of the problem is schematically illustrated in Figure 1. Magnetized
bodies create an anomalous magnetic field 𝐵up in the plane (𝑥, 𝑦) at a certain height above
the ground level. The problem is to calculate, from the measured magnetic field 𝐵up, the
magnetic field 𝐵down at a depth Δ𝑍, closer to the magnetized sources.

The magnetic fields in the upper and lower planes are related through the well-known
integral equation [Blakely, 1995]

𝐵up(𝑥, 𝑦) =
Δ𝑧
2𝜋

∫
∞

−∞
∫

∞

−∞

𝐵down(𝑥′, 𝑦′)
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + Δ𝑧2]3/2

d𝑥′d𝑦′ = 𝐴 [𝐵down] , Δ𝑧 > 0. (1)

Here, if the magnetic field below is known, 𝐵down, then the calculation of the field
in the upper plane, 𝐵up, is performed directly using the operator of upward continuation,
𝐵up = 𝐴[𝐵down]. However, in order to calculate the magnetic field in the lower plane 𝐵down
from the known distribution in the upper plane 𝐵up, it is necessary to construct the inverse
operator of downward continuation, 𝐵down = 𝐴−1[𝐵up].

An equation of type (1) is a Fredholm integral equation of the first kind. If the
magnetic field 𝐵down is unknown, then this is a linear inverse problem, which, generally
speaking, does not have a unique and stable solution [Blakely, 1995; Tikhonov et al., 1977].
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Figure 1. Schematic representation of the magnetic field downward continuation problem.

Although it is possible to obtain an analytical solution specifically for an equation of type (1)
using the Fourier transform, however, recalculating the magnetic field downwards using
such a solution is unstable [Blakely, 1995]. Therefore, to find an approximate solution to
equation (1), some numerical methods are usually used.

2. Neural network architecture
One way to find an approximate solution is to construct a downward continuation

operator 𝐴−1 using a stable solution of the forward problem. Artificial neural networks,
which are universal approximators, may be well suited for this purpose [Nielsen, 2015].
Neural network models have already been successfully applied to solve a number of inverse
problems in magnetism and stray magnetic field modeling [Coskun et al., 2022; Dubois et al.,
2022; Pollok et al., 2021; 2023].

In this paper, we propose for the scalar magnetic field downward continuation the
neural network architecture schematically shown in Figure 2. Here, the neural network is
trained to act as a downward continuation operator𝐴−1. In the first step, the neural network
calculates a trial magnetic field in the lower plane, 𝐵down, using the known magnetic field
distribution 𝐵up. After the calculation, the trial field 𝐵down is used to directly calculate
the field in the upper plane, 𝐵trial, at a height of Δ𝑍 using the stable upward continuation
operator 𝐴. Finally, the loss between the known field 𝐵up and the calculated trial 𝐵trial
is calculated, which is then used to train the neural network using the backpropagation
method. The neural network is trained until the error becomes less than a certain small
value.

It is worth noting that a computationally efficient way to calculate convolution-type
integrals (1) is to use the Fourier transform [Blakely, 1995]

𝐹[𝐵up] = 𝐹[𝐵down]e−Δ𝑍|𝑘|, (2)

where 𝐹[𝐵] denotes the Fourier transform of the magnetic field 𝐵, and the modulus of the
wave number |𝑘| = √𝑘2𝑥 + 𝑘2𝑦 . The calculation of the field in the upper plane 𝐵up, in the
developed neural network training scheme, was carried out using the fast Fourier transform.

Numerical tests have shown that the neural network structure can be quite simple to
implement the scheme in Figure 2, and its structure can be more or less arbitrary. Here, a
convolutional neural network was created to work with 512×512 pixel images. It contains
an input layer, three Conv2D layers with a 2×2 pixel kernel, 32 filters, and linear activation
functions. Each convolutional layer is followed by an AveragePooling layer with a 2×2 pixel
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Figure 2. Architecture of a neural network for magnetic field downward continuation using stable
upward continuation operator.

kernel, and an output layer. The standard normalized mean squared error function was
used to calculate the loss Loss = 1

𝑁 ∑𝑖 (𝐵𝑖 − 𝐵tr
𝑖 )

2 /⟨𝐵2⟩, where 𝐵𝑖 is the known field at point
𝑖, 𝐵tr

𝑖 is the trial field at point 𝑖, ⟨𝐵2⟩ is the mean square of the known anomalous field, 𝑁 is
the total number of measurement points.

The neural network was implemented using the tensorflow library [Abadi et al., 2016]
and the model was trained using the Adam stochastic optimization algorithm [Kingma et al.,
2014]. The training was carried out on a simple personal computer with an Intel processor
Core i7-9700 and NVIDIA graphics card GeForce GTX 950.

This type of neural networks called untrained neural network in opposite to traditional
trained on large datasets models [Dubois et al., 2022]. Untrained neural network does not
require a database for training, which is its advantage. Also, the accuracy of the magnetic
field downward continuation is controlled while training.

This method assumes that magnetized bodies are located under the plane of magnetic
field calculation. If the plane of the calculation field is located in the magnetized bodies
area, this method may not work correctly.

3. Synthetic example
The performance of the neural network was tested on the anomalous magnetic field of

the EMMmodel [The National Centers…, 2018]. The EMMmodel is compiled from satellite,
marine, aeromagnetic and ground-based data. It represents both the main and anomalous
magnetic fields of the Earth using the Gaussian model with 790 spherical harmonics, which
corresponds to a spatial resolution of about 50 km. In order to isolate the anomalous
magnetic field, the coefficients of the first 16 harmonics in the EMMmodel were set to zero.
The model anomalous magnetic field was calculated at sea level on an equidistant grid in
of 512×512 points with a step of 2 km. Then, using (2), the magnetic field was extended
upward to a height of Δ𝑍 = 4–24 km, and then extended downward using the developed
method.

In Figure 3a, the region in which the vertical component of the anomalous magnetic
field was calculated is highlighted. The dynamics of the loss function during neural network
training is shown in Figure 3b for heights Δ𝑍 = 4–24 km. The series Figure 3c–3e show
the distribution of the anomalous magnetic field at heights of 12, 8, 4 km, the results of
the downward continuation of the vertical component of the magnetic field, and the error
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distribution between true and estimated magnetic fields. For a height of Δ𝑍 = 4 km the
average error is 15 nT, for a height of Δ𝑍 = 8 km the average error is 30 nT, for a height of
Δ𝑍 = 12 km the average error is 45 nT.

Figure 3b shows that the loss here quickly reaches values below 0.4, followed by a
smooth decrease in the loss to values of 0.2 and below. The total calculation time of 5000
training iterations on a personal computer does not exceed 10 minutes.

In Figure 3c–3e it is evident that with increasing altitude the efficiency of the downward
continuation of the field decreases. This is easily explained by equation (2), which shows
that the decrease in the intensity of the magnetic anomaly exponentially depends on the
product of the wave number of its constituent harmonics 𝑘 and the altitude Δ𝑍.

Figure 3. (a) The region in which the vertical component of the anomalous magnetic field was
calculated; (b) The dynamics of the loss function during the training of the neural network for
heights Δ𝑍 = 4–24 km; the distribution of the anomalous magnetic field at a given height, the result
of magnetic field downward continuation and the error for Δ𝑍 = 12 km (c), Δ𝑍 = 8 km (d), Δ𝑍 =
4 km (e).

For example, the intensity of harmonics with a wavelength 𝑙 = 50 km decreases by a
factor of 𝑒 at an altitude Δ𝑍 ≈ 8 km. The high-frequency contribution to the anomalous
field decreases first with increasing altitude Δ𝑍, which is reflected in the efficiency of the
downward continuation of the anomalous magnetic field.

4. Conclusions
In this paper, a neural network model was developed for downward continuation of

the anomalous magnetic field towards the location of magnetic sources. The performance of
the neural network was demonstrated using a synthetic example. The accuracy of magnetic
field reconstruction depends on the distance Δ𝑍, for the demonstrated examples the error
did not exceed 45 nT for Δ𝑍 = 4–12 km. Further improvement of the algorithm is planned.
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