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1. Introduction
Geophysical signals (geomagnetic pulsations, seismic waves, wave processes in the

atmosphere, etc.) in some cases have pronounced non-stationarity. The geomagnetic
pulsations considered here are quasi-periodic oscillations, characterized by non-stationary
parameters. Such pulsations occupy frequency ranges from thousandths to several Hz and
amplitudes from hundredths to hundreds of nT [Klejmyonova, 2007]. Pulsations arise due
to the resonant interaction of magnetospheric plasma and the geomagnetic field.

Estimates of non-stationary parameters of geomagnetic pulsations are used for di-
agnostics of the magnetosphere [Guglielmi et al., 1973], can be used to determine the
frequencies and amplitudes of “serpentine emission” signals [Guglielmi et al., 2015], to find
the parameters of Alfvén signals [Potapov et al., 2021], etc.

The most widely used method of signal analysis is the discrete Fourier transform
(DFT) [Le’j, 2007], which, however, is poorly suited for non-stationary signals due to
its limited resolution. The fairly common spectral-temporal analysis using the Wigner
transform [Time-Frequency Analysis: Concepts andMethods, 2008], which is actually based on
the DFT, has errors in parameter estimates of approximately the same level as the errors of
the DFT. When implementing these methods, important information about the properties
and characteristics of signals may be lost.

The purpose of this work is to describe the developed technology for estimating para-
metric functions of geomagnetic pulsations based on two-stage approximations [Getmanov,
2021] using local approximation models [Katkovnik et al., 2006]. The proposed technology
is an alternative to the DFT, due to a more accurate fit of the approximation models used,
and is largely universal and suitable for non-stationary signals of many subject areas.
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Functional models of non-stationary signals with parametric functions, including
geomagnetic pulsation signals, are represented by the following relation

𝑌(𝑇𝑖) = 𝑌0(𝑝(𝑇𝑖), 𝑇𝑖) + 𝑊(𝑇𝑖) =
𝐿

∑
𝑙=1

𝐴𝑙(𝑇𝑖) cos𝜑0𝑙(𝑇𝑖) + 𝐸(𝑇𝑖) + 𝑊(𝑇𝑖), (1)

where 𝐴𝑙(𝑇𝑖), 𝑓0𝑙(𝑇𝑖) = 𝜑̇0𝑙(𝑇𝑖), 𝐸(𝑇𝑖) are amplitude, frequency and trend functions, 𝑊(𝑇𝑖)
is model noise, 𝐿 is the number of possible frequency components, 𝑇 is a sampling step.
𝑌0(𝑝(𝑇𝑖), 𝑇𝑖) for (1) depends on the vector of parametric functions 𝑝(𝑇𝑖), composed of 𝑝𝑗(𝑇𝑖),
𝑗 = 1,… , 𝑗0, where 𝑗0 is the number of components in the model

𝑝(𝑇𝑖)𝑇 = (𝑝1(𝑇𝑖), 𝑝2(𝑇𝑖),… , 𝑝𝑗0(𝑇𝑖)). (2)

In particular, if the components are the amplitude, frequency and trend functions,
then 𝑗0 = 3. Expressions (1), (2) serve as the basis for constructing local approximation
models.

2. The problem of two-stage approximation estimation of non-stationary signal
parameters based on local models

At the first stage of the approximation, we represent the observations as 𝑌(𝑇𝑖), 1 ≤
𝑖 ≤ 𝑁𝑓. Let us introduce local intervals 𝑁1𝑠 ≤ 𝑖 ≤ 𝑁2𝑠 dimensions 𝑁, 𝑁 ll 𝑁𝑓 with the
boundaries 𝑁1𝑠 = 1𝑁(𝑠 − 1), 𝑁2𝑠 = 𝑁𝑠, 𝑠 = 1,… , 𝑠0, where 𝑠0 = ent(𝑁𝑓/𝑁), 1 ≤ 𝑖 ≤ 𝑁𝑓1
and 𝑁𝑓1 = 𝑁𝑠0, 𝑁𝑓1 ≤ 𝑁𝑓. Let 𝑌𝑠(𝑇𝑖) be observations for 𝑌(𝑇𝑖) on local intervals. We define
local approximation models [Getmanov et al., 2016; 2018] by known functions 𝑦𝑀(𝑐𝑠, 𝑇𝑖),
that depend on the parameter vectors 𝑐𝑠, 𝑠 = 1,… , 𝑠0, and local functionals 𝐹(𝑐𝑠, 𝑌𝑠), and
formulate the problems of local approximation of estimation 𝑐0𝑠

𝐹(𝑐𝑠, 𝑌𝑠) =
𝑁2𝑠

∑
𝑖=𝑁1𝑠

(𝑌𝑠(𝑇𝑖) − 𝑦𝑀(𝑐𝑠, 𝑇𝑖))2, 𝑐0𝑠 = arg{min
𝑐𝑠

(𝐹(𝑐𝑠, 𝑌𝑠))}, 𝑠 = 1,… , 𝑠0. (3)

We obtain local functions on local intervals based on 𝑐0𝑠 (3) local functions 𝑝0
𝑗,𝑠(𝑐0𝑠 , 𝑇𝑖)

taking into account (1), (2) for 𝑖 < 𝑁1𝑠, 𝑁2𝑠>𝑖 and 𝑝0
𝑗,𝑠(𝑐0𝑠 , 𝑇𝑖) = 0, 𝑗 = 1,… , 𝑗0. Let us estimate

the parametric function with number 𝑗

𝑝0
𝑗 (𝑐0, 𝑇𝑖) =

𝑠0

∑
𝑠=1

𝑝0
𝑗,𝑠(𝑐0𝑠 , 𝑇𝑖), 𝑗 = 1,… , 𝑗0. (4)

We take the functions 𝑝0
𝑗 (𝑐0, 𝑇𝑖), 𝑗 = 1,… , 𝑗0 from (4) as the first approximations to the

parametric functions 𝑝𝑗(𝑇𝑖).
At the second stage of approximation, we introduce local intervals of size equal to

𝑁0 , sliding with a step 𝑁𝑑, with the boundaries 𝑁1𝑟 ≤ 𝑖 ≤ 𝑁2𝑟, where 𝑁1𝑟 = 1 + 𝑁𝑑(𝑟 − 1),
𝑁2𝑟 = 𝑁1𝑟 + 𝑁0 − 1, 𝑟 = 1,… , 𝑟0, 𝑟0 = ent((𝑁𝑓1 − 𝑁0)/𝑁𝑑) and 𝑁𝑓2 = 𝑁𝑑(𝑟0 − 1) + 𝑁0,
𝑁𝑓2≤𝑁𝑓1. Let us define sliding models 𝑦𝑀(𝑑𝑗,𝑟, 𝑇𝑖), and parameter vectors 𝑑𝑗,𝑟. Let us form
local functionals 𝐺(𝑑𝑗,𝑟, 𝑝0

𝑗 (𝑐0, 𝑇𝑖)) and calculate estimates 𝑑0
𝑗,𝑟

𝐺(𝑐0, 𝑑𝑗𝑟, 𝑝0
𝑗 ) =

𝑁2𝑟

∑
𝑖=𝑁1𝑟

(𝑝0
𝑗 (𝑐0, 𝑇𝑖) − 𝑦𝑀(𝑑𝑗,𝑟, 𝑇𝑖))2, 𝑑0

𝑗,𝑟 = arg{min
𝑑𝑗,𝑟

(𝐺(𝑑𝑗,𝑟, 𝑝0
𝑗 ))}. (5)

Using 𝑑0
𝑗,𝑟 (5) we find the sliding models 𝑝0

𝑗,𝑟(𝑐0, 𝑑0
𝑟 , 𝑇𝑖), 𝑁1𝑟≤𝑖≤𝑁2𝑟, 𝑝

0
𝑗,𝑟(𝑐0, 𝑑0

𝑟 , 𝑇𝑖) = 0,
𝑖 < 𝑁1𝑟, 𝑁2𝑟 > 𝑖, 𝑟 = 1,… , 𝑟0, 𝑗 = 1,… , 𝑗0 and sum them up

𝑝0
0𝑗(𝑐0, 𝑑0

𝑗 , 𝑇𝑖) =
𝑟0

∑
𝑟=1

𝑝0
𝑗 (𝑐0, 𝑑0

𝑟,𝑗, 𝑇𝑖), 𝑗 = 1,… , 𝑗0. (6)
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The function 𝑝0
0𝑗(𝑐0, 𝑑0

𝑗 , 𝑇𝑖) is implemented as a sum with overlaps from sliding, the
result (6) is averaged with weighting, as proposed in [Getmanov et al., 2015]. Let us intro-
duce unit functions, find their sum, calculate the weight function 𝑊(𝑇𝑖) and estimates of
parametric functions

𝑊0𝑟(𝑇𝑖) = 1, 𝑁1𝑟 ≤ 𝑖 ≤ 𝑁2𝑟,
𝑊0𝑟(𝑇𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑁1𝑟 − 1, 𝑁2𝑟 + 1 ≤ 𝑖 ≤ 𝑁𝑓2,

𝑊0𝑟(𝑇𝑖) =
𝑟0

∑
𝑟=1

𝑊0𝑟(𝑇𝑖), 𝑊(𝑇𝑖) = 1/𝑊0(𝑇𝑖).
(7)

𝑝0
𝑗 (𝑐0, 𝑑0, 𝑇𝑖) = 𝑊(𝑇𝑖)𝑝0

0𝑗(𝑐0, 𝑑0, 𝑇𝑖), 𝑗 = 1, 𝑙𝑑𝑜𝑡𝑠, 𝑗0. (8)

We accept functions 𝑝0
𝑗 (𝑐0, 𝑑0, 𝑇𝑖) based on (7), (8) as second approximations to 𝑝𝑗(𝑇𝑖) (2).

Let us make a choice of parameters 𝑁,𝑁0, 𝑁𝑑 for approximation procedures. We write
down the funtional 𝑆0(𝑁,𝑁0, 𝑁𝑑, 𝑌) and implement its optimization

𝑆0(𝑁,𝑁0, 𝑁𝑑, 𝑌) = (1/𝑁𝑓2)
𝑁𝑓2

∑
𝑖=1

(𝑌(𝑇𝑖) − 𝑌(𝑝0(𝑐0(𝑁), 𝑑0(𝑁,𝑁0, 𝑁𝑑), 𝑇𝑖))2)

(𝑁0, 𝑁0
0 , 𝑁0

𝑑 ) = arg{ min
𝑁,𝑁0,𝑁𝑑

𝑆0(𝑁,𝑁0, 𝑁𝑑, 𝑌)}.

3. Application of local approximation piecewise sinusoidal models with piecewise
linear additive trends for estimating non-stationary parameters of geomagnetic
pulsations

In practice, geomagnetic pulsations can be adequately represented by local approxi-
mate piecewise sinusoidal models with linear additive trends.

For the first stage, we adopted local models 𝑦𝑀(𝑐𝑠, 𝑇𝑖) and functionals 𝐹(𝑐𝑠, 𝑌𝑠)

𝑦𝑀(𝑐𝑠, 𝑇𝑖) = 𝑎𝑠 cos𝜔𝑠𝑇𝑖 + 𝑏𝑠 sin𝜔𝑠𝑇𝑖 + 𝑔1𝑠 + 𝑔2𝑠𝑇𝑖, 𝑐𝑇𝑠 = (𝑎𝑠, 𝑏𝑠, 𝑔1𝑠, 𝑔2𝑠, 𝜔𝑠), (9)

𝐹(𝑐𝑠, 𝑌𝑠) =
𝑁2𝑠

∑
𝑖=𝑁1𝑠

(𝑌𝑠(𝑇𝑖) − 𝑦𝑀(𝑐𝑠, 𝑇𝑖))2, 𝑠 = 1,… , 𝑠0. (10)

For model (9) frequency boundaries were fixed 𝜔𝑛, 𝜔min ≤ 𝜔𝑛 ≤ 𝜔max, 𝜔min, 𝜔max
partially optimal parameters were calculated 𝑎0𝑠 (𝜔𝑛), 𝑏0𝑠 (𝜔𝑛), 𝑔0

1𝑠(𝜔𝑛), 𝑔0
2𝑠(𝜔𝑛) and partially

optimal sums 𝐹(𝑐0𝑠 (𝜔𝑛), 𝑌𝑠) (10), minimization was performed by enumeration for 𝜔𝑛 =
𝜔min + Δ𝜔(𝑛 − 1), 𝑛 = 1,… , 𝑛𝑓, Δ𝜔 = (𝜔max − 𝜔min)/𝑛𝑓.

𝜔0 = arg{ min
𝜔min≤𝜔𝑛≤𝜔max

𝐹(𝑐0𝑠 (𝜔𝑛), 𝑌𝑠)}. (11)

We calculated optimal local parameters 𝜔0
𝑠 = 𝜔0, 𝑎0𝑠 = 𝑎0𝑠 (𝜔0), 𝑏0𝑠 = 𝑏0𝑠 (𝜔0), 𝑔0

1𝑠(𝜔0),
𝑔0
2𝑠(𝜔0) for (11) and evaluation of parameter functions 𝑝0

1(𝑐0, 𝑇𝑖) = 𝐴0
𝐿(𝑇𝑖), 𝑝0

2(𝑐0, 𝑇𝑖) = 𝑓0
0𝐿(𝑇𝑖),

𝑝0
3(𝑐0, 𝑇𝑖) = 𝐸0

𝐿(𝑇𝑖), 1 ≤ 𝑖 ≤ 𝑁𝑓1,

𝐴0
𝐿(𝑐0, 𝑇𝑖) =

𝑠0

∑
𝑠=1

𝐴0
𝑠 (𝑐0𝑠 , 𝑇𝑖), 𝐴0

𝑠 (𝑐0𝑠 , 𝑇𝑖) = (𝑎0𝑠
2 + 𝑏0𝑠

2)1/2, 𝐴0
𝑠 (𝑐0𝑠 , 𝑇𝑖) = 0, 𝑖 < 𝑁1𝑠, 𝑖 > 𝑁2𝑠,

𝑓0
0𝐿(𝑐0, 𝑇𝑖) =

𝑠0

∑
𝑠=1

𝑓0
0𝑠(𝑐0𝑠 , 𝑇𝑖), 𝑓0

0𝑠(𝑐0𝑠 , 𝑇𝑖) = 𝜔0
0𝑠/2𝜋, 𝑓0

0𝑠(𝑐0𝑠 , 𝑇𝑖) = 0, 𝑖 < 𝑁1𝑠, 𝑖 > 𝑁2𝑠,

𝐸0
𝐿(𝑐0, 𝑇𝑖) =

𝑠0

∑
𝑠=1

𝐸0
𝑠 (𝑐0𝑠 , 𝑇𝑖), 𝐸0

𝑠 (𝑐0𝑠 , 𝑇𝑖) = (𝑑0
1𝑠 + 𝑑0

2𝑠𝑇𝑖), 𝐸0
𝑠 (𝑐0𝑠 , 𝑇𝑖) = 0, 𝑖 < 𝑁1𝑠, 𝑖 > 𝑁2𝑠.

(12)
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At the second stage we used local models 𝑦𝑀𝑗(𝑑𝑟,𝑗, 𝑇𝑖) and functionals 𝐺𝑗(𝑑𝑟, 𝑌𝑟) and
calculated weighted parameter estimations 𝑝0

𝑗 (𝑐0, 𝑑0, 𝑇𝑖), 𝑗 = 1,… , 𝑗0

𝑦𝑀𝑗(𝑑𝑟,𝑗, 𝑇𝑖) = 𝑑1𝑟,𝑗 + 𝑑2𝑟,𝑗𝑇𝑖, 𝑑𝑇
𝑟,𝑗 = (𝑑1𝑟,𝑗, 𝑑2𝑟,𝑗),

𝐺𝑗(𝑑𝑟,𝑗, 𝑝0
𝑗 (𝑐0)) =

𝑁2𝑟

∑
𝑖=𝑁1𝑟

(𝑝0
𝑗 (𝑐0, 𝑇𝑖) − 𝑑1𝑟,𝑗 − 𝑑2𝑟,𝑗𝑇𝑖)

2, 𝑟 = 1,… , 𝑟0, 𝑑0
𝑟,𝑗 = arg{min

𝑑𝑟,𝑗
𝐺(𝑑𝑟,𝑗, 𝑌𝑟)},

𝑝0
0𝑗(𝑐0, 𝑑0, 𝑇𝑖) =

𝑟0

∑
𝑟=1

𝑝𝑗(𝑐0, 𝑑0
𝑟,𝑗, 𝑇𝑖), 𝑝0

𝑗 (𝑐0, 𝑑0, 𝑇𝑖) = 𝑊(𝑇𝑖)𝑝0
0𝑗(𝑐0, 𝑑0

𝑟,𝑗, 𝑇𝑖),

𝑝0
1(𝑐0, 𝑑0, 𝑇𝑖) = 𝐴0

𝑊(𝑇𝑖), 𝐴0
𝑊(𝑇𝑖), 𝑝0

2(𝑐0, 𝑑0, 𝑇𝑖) = 𝑓0
0𝑊(𝑇𝑖), 𝑝0

3(𝑐0, 𝑑0, 𝑇𝑖) = 𝐸0
𝑊(𝑇𝑖).

(13)

4. Estimation of non-stationary parameters for an experimental signal with
geomagnetic pulsations

We received the observations 𝑌(𝑇𝑖) nT, 𝑖 = 1,… ,𝑁𝑓 of the experimental signal with
pulsations Pc1, station PG4 (Antarctica), 17.12.2016, 14.00–16.00, 𝑁𝑓 = 69144, 𝑇 = 0.1c,
𝑁𝑓𝑇 = 1.920 h. Figure 1 shows an image 𝑌(𝑇𝑖), its non-stationarity for amplitude, trend
and frequency is obvious.

Figure 1. Experimental signal 𝑌(𝑇𝑖) with pulsa-
tions Pc1; station PG4 (Antarctica), 17.12.2016,
14.00–16.00 UT.

Figure 2. DFT-spectrum 𝑆(𝑓𝑘) for 𝑌(𝑇𝑖), average
frequency ̄𝑓0 ≈ 0.3 Hz.

Figure 2 shows the DFT-spectrum graph 𝑆(𝑓𝑘) = Δ𝑓(𝑘 − 1), 𝑘 = 1,… ,𝑁𝑆/2,𝑁𝑆 = 512 is
the dimension of the DFT. The average frequency of the signal and the trend are ̄𝑓0 ≈ 0.3 Hz
̄𝑓𝐸 ≈ 0.05 Hz.

We used the local models (9) and functionals (10). The boundaries ̄𝑓min = 0.005,
̄𝑓max = 0.605 Hz, 𝑛𝑓 = 200were established taking into account theDFT spectrum (Figure 2),

and the model parameters were found using formulas (12), (13). The optimal parameters
of the approximation procedures with ranges 𝑁0

0 = 2048 ÷ 4096, 𝑁0
𝑑 = 64 ÷ 128 were

determined using formulas (9), (10).
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Figure 3. Amplitude estimates for the 1st and
2nd approximation stages.

Figure 4. Trend estimates for the 1st and 2nd
approximation stages.

Estimates of parametric functions were calculated for 𝑁 = 512, 𝑁0 = 𝑁 ∗ 8, 𝑁𝑑 =
𝑁0/32. Figure 3 shows amplitude estimations: 1 — 𝐴0

𝐿(𝑇𝑖), 2 — 𝐴0
𝑊(𝑇𝑖); Figure 4 shows

trend estimates: 1 — 𝐸0
𝐿(𝑇𝑖), 2 — 𝐸0

𝑊(𝑇𝑖). Estimates of frequency functions were calculated.
Figure 5 (for 𝑁 = 512, 𝑁0 = 𝑁 ∗ 8, 𝑁𝑑 = 𝑁0/32) and Figure 6 (for 𝑁 = 512/2, 𝑁0 = 𝑁 ∗ 16,
𝑁𝑑 = 𝑁0/8 ) show graphs: 1 — 𝑓0

0𝐿(𝑇𝑖), 2 — 𝑓0
0𝑊(𝑇𝑖).

Figure 5. Frequency function estimates for the
1st and 2nd approximation stages, 𝑁 = 512,
𝑁0 = 𝑁 ∗ 8, 𝑁𝑑 = 𝑁0/32.

Figure 6. Frequency function estimates for the
1st and 2nd approximation stages, 𝑁 = 512/2,
𝑁0 = 𝑁 ∗ 16, 𝑁𝑑 = 𝑁0/8.

The results of the calculations in Figure 3–6 showed that the developed technology for
estimating non-stationary parameters of geomagnetic pulsations turned out to be efficient
and effective.

The mathematical modeling of pulsations and the implemented statistical testing
method [Mixajlov et al., 2018] allowed us to conclude that the relative errors in parameter
estimates were (3÷4)% for amplitude and trend functions and (4÷5)% for frequency func-
tions. The results obtained made it possible to consider that similar estimations using the
proposed technology should also be implemented for experimental signals with pulsations.

The residual sum functional is a multi-extremal function of frequency and the position
of its global and local minima depends on the noise in the observations. For large noises,
their positions changed places, which led to large errors. The use of weighted averaging
significantly reduced the errors in frequency estimates, as can be seen in Figure 5, 6.

5. Conclusion
1. The developed technology for estimating non-stationary parameters of geomagnetic

pulsations based on two-stage approximations turned out to be efficient and effective.
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2. Mathematical modeling of signals with pulsations allowed us to conclude that the
relative errors in parameter estimates were (3÷4)% for amplitude and trend functions
and (4÷5)% for frequency functions; the results obtained made it possible to consider
that similar estimations using the proposed technology should also be realized for
experimental signals with pulsations.

3. It was found that the use of weighted averaging significantly reduced the errors in
frequency estimations.

4. The proposed estimation of non-stationary parameters of geomagnetic pulsations
based on two-stage approximations has large reserves for improvement and a favorable
prospect for use in information problems of geophysics.

Acknowledgments. The work was carried out within the framework of the state assign-
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