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Abstract: The authors have developed a technology for estimating the parameters of non-stationary
geophysical signals, using a two-stage approximation with local approximation models at the first
stage and weighted averaging at the second stage. This article considered an example of estimating
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1. Introduction

Geophysical signals (geomagnetic pulsations, seismic waves, wave processes in the
atmosphere, etc.) in some cases have pronounced non-stationarity. The geomagnetic
pulsations considered here are quasi-periodic oscillations, characterized by non-stationary
parameters. Such pulsations occupy frequency ranges from thousandths to several Hz and
amplitudes from hundredths to hundreds of nT [Klejmyonova, 2007]. Pulsations arise due
to the resonant interaction of magnetospheric plasma and the geomagnetic field.

Estimates of non-stationary parameters of geomagnetic pulsations are used for di-
agnostics of the magnetosphere [Guglielmi et al., 1973], can be used to determine the
frequencies and amplitudes of “serpentine emission” signals [Guglielmi et al., 2015], to find
the parameters of Alfvén signals [Potapov et al., 2021], etc.

The most widely used method of signal analysis is the discrete Fourier transform
(DFT) [Le’j, 2007], which, however, is poorly suited for non-stationary signals due to
its limited resolution. The fairly common spectral-temporal analysis using the Wigner
transform [Time-Frequency Analysis: Concepts and Methods, 2008], which is actually based on
the DFT, has errors in parameter estimates of approximately the same level as the errors of
the DFT. When implementing these methods, important information about the properties
and characteristics of signals may be lost.

The purpose of this work is to describe the developed technology for estimating para-
metric functions of geomagnetic pulsations based on two-stage approximations [Getmanov,
2021] using local approximation models [Katkovnik et al., 2006]. The proposed technology
is an alternative to the DFT, due to a more accurate fit of the approximation models used,
and is largely universal and suitable for non-stationary signals of many subject areas.
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Functional models of non-stationary signals with parametric functions, including
geomagnetic pulsation signals, are represented by the following relation

L
Y(T;) = Yo(p(T;), T;) + W(T;) = ZAI(Ti) cos ¢o(T;) + E(T;) + W(T)), (1)

I=1

where A(T;), foi(T;) = @u(T;), E(T;) are amplitude, frequency and trend functions, W(T;)
is model no1se, L is the number of possible frequency components, T is a sampling step.
Yo(p(T;), T;) for (1) depends on the vector of parametric functions p(T;), composed of p;(T;),
j=1,...,j,, where j, is the number of components in the model

p(T)" = (py(T)), po(To), ..., pjy(T1))- (2)

In particular, if the components are the amplitude, frequency and trend functions,
then j, = 3. Expressions (1), (2) serve as the basis for constructing local approximation
models.

2. The problem of two-stage approximation estimation of non-stationary signal
parameters based on local models

At the first stage of the approximation, we represent the observations as Y(T};), 1 <
i < Ny. Let us introduce local intervals N;; < i < N,; dimensions N, N < N with the
boundaries Ny; = IN(s — 1), Npg = Ns, s = 1,..., 55, where s, = ent(N¢/N), 1 <i < Npy
and Ny; = Ny, Ny < Ny. Let Y((T;) be observations for Y(T;) on local intervals. We define
local approximation models [Getmanov et al., 2016; 2018] by known functions yy(c,, T;),
that depend on the parameter vectors ¢, s = 1, ...,s,, and local functionals F(c,,Y;), and

formulate the problems of local approximation of estimation c?

N2s
Fley Y = ) (VT = yules Ti)) ¢f = arglmin(F(e, Y) s = 1,50 (3)
i=Njy; :

We obtain local functions on local intervals based on ¢? (3) local functions p](-)’s(c?,Ti)
taking into account (1), (2) for i < Ny, N, and pj, 0(c2,T)=0,j=1,...,j,. Let us estimate
the parametric function with number j

pY(c®,T;) ijscs, D i=10jo (4)

We take the functions p;)(co, T,),j=1,...,j, from (4) as the first approximations to the
parametric functions p,(T;).

At the second stage of approximation, we introduce local intervals of size equal to
N, , sliding with a step N, with the boundaries N, <i < N,,, where N}, = 1 + Ny(r - 1),
Ny = Ny + No—1,7 = 1,...,15, 79 = ent((Ny; — No)/Ny) and Ny, = Ny(ro — 1) + N,
Nfngfl- Let us define sliding models yy(d; ., T;), and parameter vectors d; . Let us form
local functionals G(d;,, p](-)(cO,Ti)) and calculate estimates dﬁr

Nzr
G(e dyp)) = ) (p}(c”,T) ~ yuld;,, T)), df, = argmin(G(d;,, p})). (5)
i=Ny, ”

Using d]-o,, (5) we find the sliding models p;)’,(co,df,Ti), Nirci<n,,» p}’l,(co,d,O,T,-) =0,
i <Ny, Ny >i,r=1,...,r5,j=1,..., j, and sum them up

Po] 4 ]l Zp] r]' ] - 1 ]0 (6)
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The function pOJ( , d] ,T;) is implemented as a sum with overlaps from sliding, the
result (6) is averaged with weighting, as proposed in [Getmanov et al., 2015]. Let us intro-
duce unit functions, find their sum, calculate the weight function W(T;) and estimates of

parametric functions

WOY(Ti) = 1) NlrSiSNZr!
W (T) =0, 1 <i<Nj,—1, Npy + 1 <i < Np,,

Wol (T Zwm (T;) = 1/W,(T)).

p](‘)(COIdOITi) = W(Ti)pgj(coldolTi)' j: L ldOtsij' (8)

We accept functions p?(co, d°, T;) based on (7), (8) as second approximations to pi(T) (2).
Let us make a choice of parameters N, N,, N, for approximation procedures. We write
down the funtional Sy(N, N,, Ny, Y) and implement its optimization

Nfz
SO(NINO) NdlY) = (1/Nf2) Z(Y(Tz) - Y(pO(CO(N)I dO(NINOlNd)ITi))z)

(N°,Ng,Ng) = arg( min So(N, No, N, Y)).

3. Application of local approximation piecewise sinusoidal models with piecewise
linear additive trends for estimating non-stationary parameters of geomagnetic
pulsations

In practice, geomagnetic pulsations can be adequately represented by local approxi-
mate piecewise sinusoidal models with linear additive trends.

For the first stage, we adopted local models yy,(c,, T;) and functionals F(c,, Yy)

yM(Csf Ti) = 4, COS wsTi + bs sin wsTi +81st gstif CZ = (as, bs! 8151 &2 ws), (9)
N

F(CSI Ys) = Z(YS(TI) —Z/M(Cs; Ti))2l s=1,...,s0. (10)
i=Nys

For model (9) frequency boundaries were fixed w,, Wpnin < @, < Wpaxr Ominy Pmax
partially optimal parameters were calculated a(w,), bY(w,), gis(w,), gss(w,) and partially
optimal sums F(c?(w,),Y,) (10), minimization was performed by enumeration for w, =
Wpin +Aw(n = 1), n=1,...,nf Aw = (Wmax = Omin)/Mf-

W =arg| min  F(cw,),Y)). (11)

Wmin SWp<Wmax

We calculated optimal local parameters w! = w°, al = u?(wo) b = bo( %), gli(w ),
g55(@®) for (11) and evaluation of parameter functions p}(c°,T;) = AL(T;), p5(c®, T:) = fo1(T3),
pg(COIT) EL(T) 1<1<Nf11

So
2 2 . .
AT = Y AN, T), AN T) = (@ + b)Y, A, T) = 0, i < Ny, i > Ny,
s=1

fE)L C T Zﬁ)s CS’T fE)S(CS’T) w(())s/2n' fE)g(Cg,T,) = 0, i< le' i> NZS’ (12)

E%c°,T)) ZE (?,T,), E%(c° T)) = (d° + dS.T,), E%(c,T,) = 0, i < Ny, i > N,
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At the second stage we used local models yy,;(d, ;, T;) and functionals G;(d,,Y,) and
calculated weighted parameter estimations p](-)(co,do,Ti),j =1,..., 7

yMj(dr,jz T) = dlr,j + d2r,jTif drT,j = (dlr,j/ d2r,j)l

Ny,
G{(d, ; p)(c°)) = Z(p;?(co,T,.) —dvy=doy)’ T =1, 10, dy = arg(minG(d, ;, Y,)),

i=Ny, 2 (13)
pO] Zp] r ]' P] ( dO) T) = W(Ti)pO]( d?]l i)
pi(c®,d°,T;) = AW(T,), AW(Ty), pa(c”, = fow(T; °,d°,T)) = Ey(T)).

4. Estimation of non-stationary parameters for an experimental signal with
geomagnetic pulsations

We received the observations Y(T;) nT,i =1,...,N f of the experimental signal with
pulsations Pcl, station PG4 (Antarctica), 17.12.2016, 14.00-16.00, Ny = 69144, T = 0.1c,
N¢T = 1.920 h. Figure 1 shows an image Y(T;), its non-stationarity for amplitude, trend
and frequency is obvious.
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Figure 1. Experimental signal Y(T;) with pulsa-
tions Pc1; station PG4 (Antarctica), 17.12.2016,
14.00-16.00 UT.

Figure 2. DFT-spectrum S(f) for Y(T;), average
frequency f, ~ 0.3 Hz.

Figure 2 shows the DFT-spectrum graph S(f;) = Af(k—-1),k=1,...,Ng/2, Ng =512 1is
the dimension of the DFT. The average frequency of the signal and the trend are f, ~ 0.3 Hz
fz = 0.05 Hz.

We used the local models (9) and functionals (10). The boundaries f,;, = 0.005,
fmax = 0.605 Hz, ny = 200 were established taking into account the DFT spectrum (Figure 2),
and the model parameters were found using formulas (12), (13). The optimal parameters
of the approximation procedures with ranges Ny = 2048 + 4096, N7 = 64 + 128 were
determined using formulas (9), (10).

Russ. . Earth. Sci. 2025, 25, ES2020, https://doi.org/10.2205/2025ES000979 4of6


https://doi.org/10.2205/2025ES000979

EstiMATION OF PARAMETERS OF NON-STATIONARY GEOPHYSICAL SIGNALS BASED ON TWO-STAGE APPROXIMATIONS. .. GETMANOV ET AL.

0
L

0.045 " " " T __ 0025
= = 1
5 =)
= oo oF oo2r —2]
<
< =< 0015
= 0035) =

0
L

0.01

o
o
@

0.005 -
0.025 |-

0.02
-0.005 -

0015 L Wi/
| 001}

0.01 f 0.015 -

0.005 { -0.02

Estimations of the amplitude A
Estimation of the trend function E

-0.025 - : ‘ -
5000 0 1000 2000 3000 4000 5000

TimeT;, s

0 1000 2000 3000 4000
Time T, s

Figure 3. Amplitude estimates for the 1st and  Figure 4. Trend estimates for the 1st and 2nd

2nd approximation stages. approximation stages.

Estimates of parametric functions were calculated for N = 512, Ny, = N %8, N; =
N,/32. Figure 3 shows amplitude estimations: 1 — AJ(T;), 2 — AWy/(T;); Figure 4 shows
trend estimates: 1 — EJ(T;), 2 — Ey(T;). Estimates of frequency functions were calculated.
Figure 5 (for N =512, Ny = N 8, N; = Ny/32) and Figure 6 (for N = 512/2, N, = N = 16,
N, = N,o/8 ) show graphs: 1 — £}(T;), 2 — fow(T,).
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Figure 5. Frequency function estimates for the
1st and 2nd approximation stages, N = 512,
No=N=8,N;=N,/32.
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Figure 6. Frequency function estimates for the
1st and 2nd approximation stages, N = 512/2,
N, =N=16,N; =N,/8.

The results of the calculations in Figure 3-6 showed that the developed technology for
estimating non-stationary parameters of geomagnetic pulsations turned out to be efficient
and effective.

The mathematical modeling of pulsations and the implemented statistical testing
method [Mixajlov et al., 2018] allowed us to conclude that the relative errors in parameter
estimates were (3+4)% for amplitude and trend functions and (4+5)% for frequency func-
tions. The results obtained made it possible to consider that similar estimations using the
proposed technology should also be implemented for experimental signals with pulsations.

The residual sum functional is a multi-extremal function of frequency and the position
of its global and local minima depends on the noise in the observations. For large noises,
their positions changed places, which led to large errors. The use of weighted averaging
significantly reduced the errors in frequency estimates, as can be seen in Figure 5, 6.

5. Conclusion

1. The developed technology for estimating non-stationary parameters of geomagnetic
pulsations based on two-stage approximations turned out to be efficient and effective.
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2. Mathematical modeling of signals with pulsations allowed us to conclude that the
relative errors in parameter estimates were (3+4)% for amplitude and trend functions
and (4+5)% for frequency functions; the results obtained made it possible to consider
that similar estimations using the proposed technology should also be realized for
experimental signals with pulsations.

3. It was found that the use of weighted averaging significantly reduced the errors in
frequency estimations.

4.  The proposed estimation of non-stationary parameters of geomagnetic pulsations
based on two-stage approximations has large reserves for improvement and a favorable
prospect for use in information problems of geophysics.

Acknowledgments. The work was carried out within the framework of the state assign-
ment for the GC RAS and the IPE RAS, approved by the Ministry of Science and Higher
Education of the Russian Federation.
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