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Abstract: Understanding the growth dynamics of water droplets is crucial for accurate modelling of
cloud formation and climate processes. This paper delves into the theoretical aspects of condensational
growth of tiny water droplets in humid environments, such as warm clouds. The effect of droplet
size on growth is examined using a semi-analytical model based on established kinetic principles,
including the effects of diffusion and the medium discontinuity. While it was previously understood
that smaller sizes are followed by slower growth rates, the refined model predicts that submicron
droplets should grow even more slowly than anticipated. The model is consistent with previous
conclusions and encompasses the growth of larger droplets as a limiting case. This model is expected
to be applicable across a broad range of settings, from near-freezing conditions in clouds to elevated
temperatures in technical applications involving hot steam-droplet mixtures, where Stefan flows are
significant.
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1. Introduction

The primary process responsible for the formation of atmospheric clouds is the con-
densation of water vapour. The total mass of water vapours in the atmosphere is roughly
10'° kg, which is equivalent to ten thousand cubic kilometres of bulk water, with an average
annual variation of this value of around 10% [Trenberth et al., 2005]. Despite it comprises
only 1% of the atmosphere’s mass, clouds and fogs constantly cover about two-thirds of the
Earth’s surface, significantly affecting its radiation exchange with outer space.

The process of condensation has garnered considerable interest from researchers for
both fundamental exploration and practical applications such as the development of sys-
tems for extracting moisture from the atmospheric air and artificial influencing weather
patterns [Kasparian et al., 2012; Kozlov, 2013; Wilderer et al., 2017]. Today, numerous
studies in cloud microphysics address various issues, though, a few approaches have been
employed to study condensation. Direct computer modelling techniques have gained
prominence in recent years [Wang et al., 2019; Wang et al., 2022; Wang et al., 2024], but
thermodynamic [Gabyshev, 2025; Quan et al., 2014; Wang et al., 2023a,b] and kinetic ap-
proaches [Gabyshev et al., 2020; Guerrini et al., 1990; Seaver, 1984] remain fundamental.
This study applies the kinetic approach, which is based on classic molecular and mechan-
ical concepts of the structure of gases and condensed matter [Eucken, 1930; Fuchs, 1959;
Shuleikin, 1968].

The present study focuses on the initial droplet sizes ranging from several tens of
nanometres (close to the molecular diffusion regime) to single tens of micrometres (when
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near-surface layer effects become negligible and growth rate asymptotes to the radius-
square-law [Jakubczyk et al., 2012; Kolwas et al., 2019]). Thereby, our paper aims to provide
better insights into the very initial precipitation stages in clouds before gravitational coagu-
lation becomes prominent (prevailing at diameters 2 30 pm).

The main objective is to advance the analytical theory of stationary condensational
growth of small droplets at scales comparable to the mean free path in air, assuming the
absence of heat release by the condensed phase. Our semi-analytical approach elucidates
the formal relationship between smaller droplet sizes and slower growth rates. Although
this behaviour is generally understood, our calculation articulates and implements a specific
concept underpinning it, which, despite being intuitively grasped, has not been expressed
explicitly until now. While the literature may have implicitly acknowledged this concept,
explicit discussion may have been avoided due to its perceived self-evidence. Nonetheless,
a thorough review of the literature did not uncover any solution presented in precisely the
same form as ours.

Exploration within the transition range of scales between kinetic molecular diffusion
and diffusion in the developed Knudsen layer regime will show us that the growth rate of the
droplets on Aitken nuclei (approximately 0.1 pm and smaller) not only deviates significantly
from the radius-squared law limit but is also considerably slower than previously thought.
Aitken nuclei fall within the so-called Greenfield gap [Poydenot et al., 2024], a size range
where particles are inefficiently removed from the atmosphere through scavenging by
raindrops. This results in these particles remaining suspended for extended periods, ranging
from weeks to months. The reduced growth rate of droplets on such nuclei, coupled with
Brownian motion of theirs, may therefore contribute to their prolonged residence time in
the atmosphere.

2. Basic assumptions and equations

Let a spherical droplet of radius r be in an infinite air space of constant temperature
and humidity. The ordinary diffusion coefficient D of water vapour from the ambient air
towards the droplet surface is affected by kinetic effects within the Knudsen layer, which
surrounds the droplet and has a thickness approximately equal to the mean free path
(A) [Fuchs, 1959; Jakubczyk et al., 2012]:

D
Dg =

where § is a dimensionless coefficient that measures the thickness of the Knudsen layer
in units of (1) and for simplicity assumed to be taken as = 1, noting that it is implied
to follow (1) in all subsequent equations; «, is the condensation coefficient, representing
the probability that the molecule transitioning to the condensed phase surface will not be
reflected from it. A review of formulae for estimating the value of «, has been provided
by [Golubkov et al., 2018]. The investigation of the contribution of this factor falls outside the
scope of the present study. For simplicity, we therefore assume a, to be constant, typically

around 0.04 for water [Kozyrev et al., 2001; Mozurkewich, 1986]. Above, (v) = /L

2ntm
represents one quarter of the mean molecular speed of a water vapour molecule (with mass
m). The mass flux (the increase of the droplet mass per unit time) towards the droplet
surface should be determined taking into account the Stefan flow, which is responsible for
hydrodynamic entrainment of air with the vapour flow [Fuchs, 1959]:

¢ dc
Iy = —4nr’Deg—+ —,
Cs— M dr
where ¢; = §; + A“/I—’ is the total molar concentration of the medium equal to the sum of the

molar concentration ¢/M of water vapour (with an absolute humidity ¢ and a molar mass M)
and the molar concentration of the remaining components ¢’/M’ (as dry air with the mass
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concentration ¢’ and molar mass M’), respectively. The value of ¢, differs negligibly near
and far from the droplet, therefore it can be considered constant. The concentration field is
assumed to be steady, i.e. only the stationary growth is considered. Readers interested in the
temperature decrease associated with condensation may refer to equations (3) in [Jakubczyk
etal.,, 2012] and (6.4) in [Fuchs, 1959] for a simplified treatment. In our analysis, we neglect
it and consider exclusively the isothermal case.

After transformation, integration, and substitution of the integration limits as pre-
scribed in [Fuchs, 1959], we obtain the following expression:

1 (H@)&] D 4nDAc

—1n > =
r 2r¥(v)a, Iy

(1)

r

with the definition introduced

def . [ Coo C
Ac:eM_cmln(l—M )—csoln(l—Mzso)],

CS oo

where ¢, is the absolute humidity over the droplet surface and c,, is that of ambient air.
The following form is convenient for numerical use:

1 1
Ac = Cooxooln(l - —)—coxoln(l - —),
Xoo X

e M0,
M)
where x = 7 is the water vapour mixing ratio (ratio of the water vapour density c to that of
dry air c). The ratio x characterizes the intensity of the Stefan flow. It is small at or below
room temperature, but not negligible at high temperatures (see [Gabyshev et al., 2020] for
all necessary material expressions). The flux of vapour condensed on the droplet is as from
the equation (1). On the other hand, the flux is as follows:

dr
I, = 4nr2%p,

where p is the bulk water density. After transformation, separation of variables, and
integration, we obtain the implicit function of the droplet radius r:

F(r) = F(ro) + A(r —19) = T = 1o, (2)

with the following definitions introduced

0 2o ) 2

def D def t

-
DAc

where r, is the initial radius of the droplet at time f,. This can correspond to the radius of
the condensation nucleus in heterogeneous nucleation, or the scale of inhomogeneity in
homogeneous nucleation (1-20 nm). We posit that this expression is valid when the initial
radius exceeds (1) or is comparable to that. Otherwise, not kinetic but molecular diffusion
regime takes place.
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3. Micrometric droplets

If the droplet is quite large r > (1), then the thickness of the near-surface layer can be
neglected, resulting in F(r) = r?/2. Substituting it to (2) yields the equation describing r as

a function of time t: .
3 [(r+ AP = (ry+ 4’| = 7~ 7. (4)

The droplet radius can be expressed explicitly from the equation (4). Thence, the
surface area growth rate per unit time is the following:

d il
d_izsn—SnA[Z(T—To)+(ro+A)] . (5)

1
2

It is worth noting that hints for deriving the expression (5) can be found in the famous
monograph [Fuchs, 1959]. While the author of that reasons in terms of mass increase rather
than area increase per unit time, the line of reasoning is not carried through to its logical
conclusion, which would have resulted in an expression (5). Nonetheless, as we see, this
derivation is straightforward. A minor modification of (5) can be made, noting that (in our
notation (v) is a quarter of the mean speed!):

D= %(A)(v).

Within the temperature range of 0°C to 100 °C at atmospheric pressure, the ratio
A= %% varies monotonously and falls between 1.9 um and 2.9 um based on the material
expressions provided by [Gabyshev et al., 2020]. When r >> A, or when the time is sufficiently
large (t —ty > ﬁ), the growth rate asymptotically approaches the well-known value
(below, the infinity symbol in the index indicates unlimited time and the dot above denotes

differentiation with respect to ordinary time #):

ﬁ
dt

. D
=81, or S, = SRTAC. (6)

T—00

Furthermore, in the limit where y << M /M’, we have Ac = ¢, —c,,, and the equation (6)
reduces to the classical ‘Maxwellian’ form [Fuchs, 1959; Jakubczyk et al., 2012]. It is this
expression is commonly referred to as the radius-square-law, as the square of the radius,
representing the surface area, increases linearly with time. And the constant value (6) for
large droplets leads to the common use of the derivative of the area as a measure of the rate
of condensational growth.

In the temperature range where Stefan flow is weak, the expression for Ac can be
expanded in a series. Then the droplet growth rate S differs from that calculated by
formula (6) by the following factor [Fuchs, 1959]

Co + Coo
2c,M

fi=1+

which at room temperature gives a correction of just over 1%. This means that it can
be neglected even for warm clouds, however must be taken into account for industrial
applications involving hot steam-droplet mixtures [Strizhak et al., 2017].

For a moving microdroplet, the effect of the surrounding medium can be accounted
for by introducing a ventilation coefficient, which depends on relevant similarity criteria.
For droplets with radii less than 60 pm in laminar flow, this coefficient can be described,
for example, by the formula [Pruppacher et al., 2010]:

£,=1+0.108-Sc5 - Re,

where Re is the Reynolds number and Sc is the Schmidt number. Specifically, for a 20 pum
diameter droplet moving at 0.1 m/s through saturated steam, the correction f, is only a
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fraction of a percent. Therefore, this correction can be neglected when analysing cloud
conditions.

It is noteworthy that the exact laws governing droplet growth or evaporation remain
of particular interest to many modern researchers, due to their practical applications at
the nano- and micro-scales [Dalla Barba et al., 2021; Rana et al., 2019]. Therefore, we will
now consider the calculation of the growth rate in the presence of significant kinetic effects,
where the thickness of the Knudsen layer cannot be neglected.

4. Submicrometric droplets

Combining equations (2) and (3) and employing the apparatus of inverse derivatives,
we readily obtain the following expression:
ANEN
(e 2y} 7

For large radii r > A, (1), it yields a simplified expression:

% :{A+r1n

~

dr~1

dr r’

Recognising that 8nr5—; = Z—i, from (7) we obtain an expression for the growth rate:

ﬁ B 8mtr (8)
T A1+ 27|

When the droplet radius is large r > A, (1), expression (8) approaches the constant
value 87. This effectively recovers the well-known classical expression (6) as a limiting
case. We also could similarly derive an expression for the rate of mass increase. It mirrors
expression (8), but the numerator becomes 47{r2p instead of 87r.

Together with equation (2), expressions (7) and (8) form a closed system for the precise
numerical calculation of the rate of change of radius and area at any given time. When
considering the inverse functions #(r) and S(r), the dependence t(S) is fully analytical with
r serving as a connecting parameter. Therefore, this approach can be termed semi-analytical
(fully analytical in one direction and numerical in the other).

5. Calculations and discussion

For the calculations, the following values were adopted at 10°C [Gabyshev et al., 2020]:
(A) =6.2x10%m, D =2.3x10°m?%s, (v) = 140m/s, @ = 0.04. Generally speaking,
A= %@) = 2.1 x 107*m =~ 33(\) represents a characteristic length scale above which a
droplet can be considered quite large.

Let the initial radius be equal to r, = 0.1() in a moment 7, = 0. Since the ultimate
rate (equation 6) is constant, we normalise the rates to it. Thus, we denote the ratio of the
growth rate (8) to (6) for the submicron case as &,, and the ratio of the rate (5) to (6) for the
micrometric case as &,,. Both of these functions are plotted in Figures 1, 2: &, is calculated
numerically (solid line) and &, analytically (dashed line). It was imperative to meticulously
adhere to the proper chain of calculations. The first stage involved setting the radius for the
submicron model r, at discrete steps, for example, 0.1(1) apart. Subsequently, the value of
&, was computed simultaneously using (8), and the corresponding time 7, was determined
using (2). Following this, the radius r,, in the microscopic model was calculated at the same
time 7, using equation (4), providing insight into the size that the radius would reach within
the same timeframe as the droplet from the submicron model. It was only after completing
these calculations that the rate in the submicron model &,, was derived using the time 7,
and the radius r,,. Only this order of calculation is strictly proper, and in Figures 1, 2, the
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graphs of &, (ry) and ¢, (r,,) are actually displayed. Note that the graphs largely coincide,
except in the submicrometric range, where they exhibit a substantial divergence.

The graphs indicate that the droplet growth rate approaches the asymptotic Maxwell’s
value (6) rather slowly. Notably, growth rate increases significantly slower in the submi-
crometric size range, and this finding was not previously reported in the literature. For
instance, when the droplet radius equals the mean free path (1), the growth rate is ap-
proximately half that previously anticipated (Figures 1 and 2, enlarged graphs). Similarly,
when the droplet radius is 10(), the actual growth rate may be 3% lower than previously
assumed. Specifically, a droplet forming on a condensation nucleus with a size of 0.1(1)
(the Aitken nucleus) would require a dimensionless time of T = 0.005 according to the
normal model, and T = 0.006 according to our refined model, to achieve a dimensionless
growth rate of £ = 0.12.
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(a) (b)
Figure 1. Droplet growth rate & versus radius r for the submicron model (solid line) and the micro-
scopic model (dashed line). Enlarged graph shown right.
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Figure 2. Droplet growth rate & versus time 7: submicron model (solid line), microscopic model
(dashed line). Enlarged graph shown right.
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6. Conclusions

Accurate assessment of droplet mass exchange is essential for understanding droplet
lifetime and influencing the feasibility of airborne processes, such as atmospheric precipi-
tation formation. This study focused on the impact of droplet size on condensation rate,
motivated by the fact that cloud droplets grow by condensation to a radius of approximately
15-20 pm, beyond which coagulation prevails.

While prior research established that smaller droplets grow slower than larger ones,
a definitive model that considers the transfer of molecules within the Knudsen layer and
provides a clear derivation of the radius-square law, with Maxwell’s growth rate as the
asymptotic limit, was lacking. This investigation addressed this gap by developing a semi-
analytical model based on the kinetic approach with terms that vanish at large droplet
sizes. Our results demonstrate a significant impact on the growth rate, especially for
submicrometric droplets. We estimated that the growth rate is roughly half of what was
previously expected when the droplet radius equals the thickness of the Knudsen layer (or
the mean free path, if g = 1).

It appears that other researchers might want to validate this finding using molecular
dynamics simulations, and we suggest that readers consider this for future research en-
deavors. It is also noteworthy that our model treats concentration as a time-independent
multiplier in (3) due to the steady-state approximation assumed at the outset. This enables
our model to be applied even at high temperatures where Stefan flow significantly modifies
the concentration factor.

Acknowledgments. The work was carried out within the framework of the state assign-
ment for the GC RAS, approved by the Ministry of Science and Higher Education of the
Russian Federation.
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