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Abstract: In less than six years, three devastating earthquakes with magnitude exceeding 8.0 have
occurred over the Chilean subduction zone. These events were quite well recorded by permanent
GNSS stations. We used finite element modeling for a spherically symmetric layered Earth and
machine learning methods to investigate the geodynamic processes preceding and accompanying
the Chilean earthquake sequence. We find that preseismic coupling before all events is strongly
correlated with the coseismic slip distribution, while afterslip primarily located around the coseismic
slip patches. We also found that large geologic structures of the oceanic plate have a decisive influence
on the development of geodynamic processes in the rupture zones of large Chilean earthquakes.
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1. Introduction

The first two decades of the 21st century were marked by an alarming surge in strong
earthquakes all over the world. During this period, great earthquakes with magnitudes
exceeding 8 occurred in many seismically active regions of the Earth. Three such strong
seismic events have occurred over the Chilean subduction zone in less than six years: the
2010 Maule earthquake (M, = 8.8), the 2014 Iquique earthquake (My, = 8.1) and the 2015
Illapel earthquake (My, = 8.3).

All these earthquakes are the shallow-depth megathrust events that ruptured the
long-lived seismic gaps. The main objective of our research is to study and compare the
deformation processes preceding and accompanying each of the three M > 8 earthquakes in
Chile, and to identify the factors controlling the accumulation and release of stress during
strong earthquakes.

2. Data and methods

The dataset used in this study consists of three-component time series from 111 perma-
nent GNSS stations over the 2007-2016 period provided by Nevada Geodetic Laboratory.

We constructed the finite-fault models to investigate the distribution of preseismic
coupling along the fault zones as well as the distribution of coseismic slip and afterslip.
The geometric design of the finite-fault models was based on the aftershock distribution.
To estimate the interplate coupling, coseismic slip and afterslip distribution, we inverted
preseismic velocities, coseismic offsets and postseismic displacements using the constrained
damped least squares [Gill et al., 1984] over a uniform rectangular grid.
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The inversion minimizes the objective function:
2 2
F=lw(Gm-d)|;, + Allmll, .

The first term represents the misfit between modeled Gm and observed velocities/dis-
placements d, and the second term provides a regularization of the solution. Here w is a
weight vector inferred from observation uncertainties, G is a matrix consisting of convolu-
tions of the corresponding Green's functions and unit displacements over the subfaults,
m is a vector of estimated model parameters and A is a positive damping factor [Steblov
et al., 2023]. We calculated Green’s functions for a spherically layered Earth model using a
method described in [Pollitz, 1996]. To evaluate the capability of the damped least squares
method in reconstructing the spatial variation of the slip or coupling distribution, we
perform the checkerboard tests as described in [Steblov et al., 2023].

The modeling of postseimic processes is a challenging task since potential candidates
for intense postseismic deformation after the megathrust events are afterslip, viscoelastic
relaxation and poroelastic rebound. Distinguishing between these different mechanisms
is nearly impossible based on only GNSS data. It is believed that vertical postseismic
deformations may be an indicator of the dominant postseismic mechanism e.g., [Nishimura
et al., 2003]. However, the use of vertical observations is somewhat complicated due
to their smaller amplitude compared to horizontal ones and, at the same time, larger
observation errors, as well as due to the superposition of tectonic and non-tectonic signals
(for example, surface loads) [Wang et al., 2016]. Moreover, according to recent studies,
vertical deformation during the seismic cycle shows significant spatiotemporal variations
depending on the mechanical properties and fault kinematics [Li et al., 2024]. Therefore,
the vertical displacement pattern is difficult to interpret unambiguously.

To shed some light on the on the spatially and temporally dominant postseismic mech-
anism after the Chilean earthquakes we perform regression analysis of continuous GNSS
time-series using machine learning methods. The solution for best regression model param-

2
eters was obtained by a minimization of an empirical risk functional ming.g ||p(T)9 - Y||L ,
2

where 6 € © = RM is a model parameter vector, T € R is a set of time moments, Y € Ris a
set of time series values,

(1,¢,sin(27ct), cos(27t), sin(47ct), cos(4nt), H(t > Ty), ...,

post

p(t) = H post
(t>T)), H(t >Ty ) - post,(t),... , H(t >T; ) - post,(t))

t t
is a feature vector, H is a Heaviside function, posti(t) = (ln (1 + —), —exp (——)) is a
T Tp
postseismic features vector for i-th event [Sobrero et al., 2020], T is a decay time. Here we

neglect the poroelastic rebound due to large distances from the sources to GNSS stations.
Moments of earthquakes I and onsets of postseismic processes k (Figure 1) was determined
using the Change Point Detection (CPD) approach [Truong et al., 2020].
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Figure 1. Results of applying the CPD algorithm to the east (a) and north (b) components of time
series of the GNSS-station CONT (Conception, Chile). Dashed lines denote the instantaneous shifts.
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Figure 2. Geographical distribution of logarithmic (a, b) and exponential (c, d) decay times after the

2015 Illapel earthquake. Red and blue colors denote east and north components, respectively.

The estimated decay constants 7, and 7, show prominent domination of afterslip in
the near-field and viscoelastic relaxation in the far-field towards the continent. An example
of estimated decay fields for 2015 Illapel earthquake is shown on Figure 2.

3. Results

Our inverted preseismic coupling, coseismic slip and afterslip distributions for the
2010 Maule, 2014 Iquique and 2015 Illapel earthquakes are represented on Figure 3-5.
These models agree in their main characteristics (location of areas of maximum displace-
ments, size of earthquake sources, etc.) with similar models obtained from the inversion of
teleseismic body waves (e.g., [Lay et al., 2014; Pulido et al., 2011]), joint inversion of tsunami
waveforms and geodetic or teleseismic data (e.g., [Gusman et al., 2015; Heidarzadeh et al.,
2016]) as well as joint inversion of GNSS and InSAR data (e.g., [Klein et al., 2017; Lin et al.,

2013)).
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The results of our modeling show good spatial agreement between location of locked
patches (Figure 3a, 4a, 5a) and areas of stress release (Figure 3b, 4b, 5b) for all studied
earthquakes.

The afterslip models (Figure 3c, 4c, 5¢) show a predominantly dipping and along-strike
development of rupture zones, which indicate the postseismic stress release in patches
adjacent to areas of high coseismic slip.
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Figure 3. Models of preseismic coupling (a), coseismic slip (b) and 6-months afterslip (c) in the 2010
Maule rupture zone. The star is the mainshock (gCMT). Blue vectors indicate the GNSS data. Green
lines show active regional faults [Maldonado et al., 2021].
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Figure 4. Models of preseismic coupling (a), coseismic slip (b) and 6-months afterslip (c) in the 2014
Iquique rupture zone. Designations according to Figure 3.
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Figure 5. Models of preseismic coupling (a), coseismic slip (b) and 6-months afterslip (c) in the 2015
Illapel rupture zone. Designations according to Figure 3.

Comparison of our inverted models and regional morphostructures show that large
geological features of the oceanic plate act as natural boundaries of rupture zones, while
active tectonic structures of the continental margin have a local influence on the processes
of stress accumulation and release.

4. Conclusion

We have modeled the preseismic coupling as well as coseismic slip and afterslip on
three megathrust earthquakes rupture zones in Chile based on GNSS data.

We inferred thst postseismic deformations localized around the mainshock rupture
zone are most likely explained by afterslip, whereas long-term diffuse deformations ob-
served in the far field can be explained by viscoelastic relaxation of the lower crust or upper
mantle.

We also found that large geologic structures of the oceanic plate have a decisive
influence on the development of geodynamic processes in the rupture zone.
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