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Аннотация. Синтезирован новый перспективный катодный материал для твердооксидных топлив-
ных элементов кобальтит лантана стронция, допированный катионами тантала. С помощью метода ква-
зиравновесного выделения кислорода изучена высокотемпературная десорбция кислорода, определены
диапазоны изменения кислородной нестехиометрии и определены значения термодинамических функ-
ций системы в области температур (600–850°C) и парциальных давлений кислорода (∼10−5– 0.2 атм).
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Abstract. Doped with tantalum cations a new prospective cathode material for solid oxide fuel cells
of lanthanum strontium cobaltite was synthesized. High-temperature oxygen desorption was studied using the
quasi-equilibrium oxygen release method, the ranges of oxygen nonstoichiometry were determined, and the
values of thermodynamic functions of the system were obtained in the temperature ranges (600–850°C) and
oxygen partial pressures (∼10−5– 0.2 atm).
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ВВЕДЕНИЕ

Твердооксидные топливные элемен-
ты (ТОТЭ) считаются перспективными
устройствами для выработки электроэнер-
гии благодаря своей высокой эффективно-
сти преобразования химической энергии
в электрическую, низкому уровню выбро-
сов и бесшумной работе, однако экономиче-
ская конкурентоспособность и срок службы
системы ТОТЭ все еще ниже, чем у су-
ществующих коммерческих электростан-
ций. Срок службы ТОТЭ в значительной
степени зависит от химической и терми-
ческой совместимости электрода и элек-
тролита. Снижение рабочей температуры
до 500–600°C является многообещающей
стратегией повышения эксплуатационной
долговечности, а также уменьшения стои-
мости системы ТОТЭ [1]. Тем не менее,
низкотемпературные ТОТЭ сталкивают-
ся с серьезными проблемами, связанными
с пониженной каталитической активностью
электрода, в частности, высокое перенапря-
жение реакции восстановления кислорода
на катоде. Для его преодоления требуется
большая энергия активации по сравнению
с реакцией окисления на аноде, что при-
водит к значительным потерям мощности
и снижению производительности топлив-
ного элемента [1, 2].

Идеальный катодный материал должен
соответствовать следующим требованиям:
1) высокая ионная и электронная прово-

димость, 2) высокая каталитическая актив-
ность в реакции восстановления кислоро-
да при рабочих температурах ТОТЭ, 3) ко-
эффициент термического расширения, соот-
ветствующий материалу электролита.

Популярными катодными материала-
ми в системах ТОТЭ являются оксиды
со смешанной ион – электронной прово-
димостью (СИЭП-оксиды) со структурой
перовскита на основе кобальта, например
La1−xSrxCoO3−δ (LSC), поскольку они обла-
дают высокой смешанной проводимостью
и более высокой концентрацией кислород-
ных вакансий ввиду наличия восстанавли-
ваемых ионов и низкой прочности связи
между кислородом в структуре и переход-
ным металлом по сравнению с традицион-
ным катодным материалом La1−xSrxMnO3−δ
(LSM) [2]. Однако присутствие кобаль-
та приводит к более высокому несоответ-
ствию коэффициента термического расши-
рения с материалами электролитов. В Ин-
ституте химии твердого тела и механохи-
мии СО РАН была разработана стратегия
допирования СИЭП-оксидов высокозаряд-
ными катионами B5+ (Ta5+, Nb5+) [3, 4] –
инструмент для тонкой настройки их функ-
циональных параметров [5]. Данная рабо-
та посвящена изучению катодного материа-
ла на основе LSC, допированного танталом,
методом квазиравновесного выделения кис-
лорода (КРВК) [6]. Метод КРВК позволяет
количественно оценить влияние допирова-
ния как на диапазон изменения кислород-
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ной нестехиометрии Δδ, так и на харак-
тер термодинамических функций (энталь-
пию и энтропию), описывающих изучае-
мый СИЭП-оксид.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец LSC, допированный 5 мол.%
Ta5+ (LSCT5), был синтезирован твердо-
фазным методом из оксидов соответству-
ющих металлов (х.ч.) и карбоната строн-
ция (х.ч.) с последующим спеканием при
температуре 1300°C, последовательность
синтеза подробно описана в работе [7].
Полученный образец был охарактеризован
методом рентгенофазового анализа с ис-
пользованием дифрактометра D8 Advance
(Bruker, Германия), оснащенного высоко-
скоростным детектором LynxEye (СuKα из-
лучение). Данные были получены в диапа-
зоне 2θ 20°–100° с шагом 0.02° и временем
накопления сигнала в точке 0.5 с и описаны
одной фазой с помощью метода Ритвельда
(рис. 1) в программном обеспечении Topas
4.2 (Bruker, Германия) с параметром обра-
ботки Rwp = 3.98%.

Рис. 1. Результаты уточнения по мето-
ду Ритвельда для синтезированного образца
La0.6Sr0.4Co0.95Ta0.05O3−δ (LSCT5) (цвет онлайн)

Fig. 1. The results of the refinement using
Rietveld method for the synthesized sample
La0.6Sr0.4Co0.95Ta0.05O3−δ (LSCT5) (color online)

Исследование высокотемпературной
десорбции кислорода с помощью метода

КРВК проводили в диапазоне температур
600–850°C следующим образом: порошок
оксида фракции (0.064–0.160 мм) фикси-
ровали в центре кварцевого проточного
реактора с помощью кварцевой ваты, ре-
актор помещали в трубчатую печь и на-
гревали до температуры 850°C при посто-
янном парциальном давлении кислорода
pO2 = 0.20 атм (смесь He/O2) и скоростью
потока 50 мл/мин, далее переключали газо-
вые линии и выдерживали оксид в течение
7 часов в атмосфере чистого гелия (pO2 ∼
∼ 10−5). Состав газовой смеси на выходе
из реактора фиксировали с помощью сигна-
ла кислородного датчика на основе диокси-
да циркония, стабилизированного оксидом
иттрия (YSZ-датчик). Далее снижали тем-
пературу трубчатой печи (с 850 до 600°C
с шагом 25–50°C) и повторяли последова-
тельность эксперимента на каждом темпе-
ратурном шаге.

Дополнительным методом изучения
высокотемпературной десорбции кислоро-
да и аттестации полученных данных явля-
ется метод термопрограммируемой десорб-
ции кислорода (ТПД-О2) который заключа-
ется в нагреве реактора с порошком окси-
да с линейной скоростью нагрева 1°C/мин
до 850°C в атмосфере чистого гелия.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2, a приведены равновесные
фазовые диаграммы, состоящие из релак-
сационных изотерм и релаксационной кри-
вой ТПД-О2 в координатах «∆δ – lg pO2»
для образца LSCT5. Полученные данные
подтверждают размывание фазового пере-
хода P1 – P2, характерного для кобальти-
тов [5]. В диапазоне температур и парциаль-
ных давлений кислорода общее изменение
кислородной нестехиометрии ∆δ составило
0.04 и 0.12 для температур 600 и 850°C со-
ответственно.

В условиях проведения эксперимен-
та КРВК химический потенциал кислоро-
да в оксиде равен химическому потенциа-
лу кислорода в газовой фазе над порошком
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образца и может быть выражен следующим
образом:

µ
oxide
O2
= µ

gas
O2
= µ°O2(T )+RT ln(pO2), (1)

где R – универсальная газовая постоян-
ная, 8.314 Дж·моль−1·K−1, pO2 – измеряемое
на выходе из датчика парциальное давление
кислорода, атм, µ°O2(T ) – химический по-
тенциал кислорода при 1 атм., кДж·моль−1.
На рис. 2, б приведена зависимость хими-

a/a

б/b

Рис. 2. Равновесная фазовая диаграмма «∆δ –
lg pO2» (a). Зависимость химического потенциа-
ла кислорода в оксиде LSCT5 от температуры (б)

(цвет онлайн)

Fig. 2. The equilibrium phase diagram “∆δ –
lg pO2” (a). The dependence of the chemical poten-
tial of oxygen in LSCT5 oxide on temperature (b)

(color online)

ческого потенциала кислорода оксида
от температуры, полученная с помощью
уравнения (1). С другой стороны, хими-
ческий потенциал выражается с помощью
значений парциальной энтальпии и энтро-
пии:

µ
oxide
O2
= H

oxide−TS
oxide
. (2)

С помощью линейной аппроксима-
ции зависимостей химического потенциала
от температуры для фиксированных значе-
ний кислородной нестехиометрии из обла-
сти перекрывания данных (−∆δ = 0.01–0.09)
были получены значения парциальной эн-
тальпии и энтропии.

По мере уменьшения количества кис-
лорода в структуре оксида величины эн-
тропии изменяются в пределах от 104 ± 1
до 135 ± 1 Дж · моль−1 · K−1, а энтальпии
от 158 ± 1 до 178 ± 1 кДж · моль−1. Зави-
симость энтальпии и энтропии от нестехио-
метрии имеет линейный характер, с коэф-
фициентом детерминации 0.86 и 0.98 соот-
ветственно. Значения и характер зависимо-
стей согласуется с литературными данны-
ми [7].

ВЫВОДЫ

Таким образом, в ходе работы с по-
мощью метода КРВК были построены рав-
новесные фазовые диаграммы, из которых
видно, что в изучаемых диапазонах темпе-
ратур и парциальных давлений кислорода
для образца La0.6Sr0.4Co0.95Ta0.05O3−δ отсут-
ствуют фазовые переходы, способные рез-
ко изменять свойства материалов, а общее
изменение нестехиометрии составляет 0.04
и 0.12 для температур 600 и 850°C соот-
ветственно. Была получена зависимость хи-
мического потенциала кислорода в структу-
ре оксида от температуры для различных
значений нестехиометрии, с помощью кото-
рых были получены диапазоны изменения
парциальных величин энтальпии и энтро-
пии.
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