Подходы к массовому синтезу люминесцентных фторидных наноматериалов

Обложка

Цитировать

Полный текст

Аннотация

В работе приводятся результаты оптимизации методик массового синтеза фотолюминесцентных наночастиц β-NaRF4 (R=Y, Er–Lu) в рамках технологических подходов «сверху вниз» и «снизу вверх». Отработаны технологические режимы высокоэнергетического помола поликристаллов β-NaRF4, полученных направленной кристаллизацией расплава, для синтеза частиц в размерном диапазоне до 100 нм с массовым выходом до 2.5 г за один технологический процесс. Показано, что последующая процедура их термообработки в присутствии соответствующих трифторацетатных прекурсоров в среде высококипящих органических растворителей позволяет значительно повысить их фотолюминесцентные характеристики за счет пассивирования поверхности. Разработан и оптимизирован метод синтеза наночастиц β-NaRF4 за счет гетерогенной кристаллизации на ультрамелких затравочных кристаллах, позволяющий стабилизировать процесс роста, определяемый полиморфизмом данного класса соединений. Продемонстрирована эффективность данного метода для массового синтеза НЧ β-NaRF4 на основе «тяжелых» лантаноидов (до 50 г) со структурой «затравка–ядро–оболочка» в широком размерном диапазоне с контролируемыми морфологическими и структурными характеристиками.

Об авторах

Александр Владимирович Кошелев

Институт кристаллографии им. А.В. Шубникова, КККиФ, НИЦ «Курчатовский институт»

Автор, ответственный за переписку.
Email: avkoshelev03@gmail.com
Россия, 119333, Россия, Москва, Ленинский проспект, 59, стр. 1

Наталья Андреевна Архарова

Институт кристаллографии им. А.В. Шубникова, КККиФ, НИЦ «Курчатовский институт»

Email: natalya.arkharova@yandex.ru
Россия, 119333, Россия, Москва, Ленинский проспект, 59, стр. 1

Денис Нуриманович Каримов

Институт кристаллографии им. А.В. Шубникова, КККиФ, НИЦ «Курчатовский институт»

Email: dnkarimov@gmail.com
Россия, 119333, Россия, Москва, Ленинский проспект, 59, стр. 1

Список литературы

  1. Д.Н. Каримов, П.А. Демина, А.В. Кошелев, В.В. Рочева, А.В. Соковиков, А.Н. Генералова, В.П. Зубов, Е.В. Хайдуков, М.В. Ковальчук, В.Я. Панченко Российские нанотехнологии, 2020, 15(6), 699. doi: 10.1134/S1992722320060114
  2. Z. Di, B. Liu, J. Zhao, Z. Gu, Y. Zhao, L. Li Sci. Adv., 2020, 6(25), eaba9381. doi: 10.1126/sciadv.aba9381.
  3. V.V. Rocheva, A.V. Koroleva, A.G. Savelyev, K.V. Khaydukov, A.N. Generalova, A.V. Nechaev, A.E. Guller, V.A. Semchishen, B.N. Chichkov, E.V. Khaydukov Sci. Rep., 2018, 8(1), 3663. doi: 10.1038/s41598-018-21793-0.
  4. Y. Zhou, S. Wu, F. Wang, Q. Li, C. He, N. Duan, Z. Wang Chemosphere, 2020, 238, 124648. doi: 10.1016/j.chemosphere.2019.124648.
  5. S. Liu, L. Yan, Q. Li, J. Huang, L. Tao, B. Zhou J. Chem. Eng., 2020, 397, 125451. doi: 10.1016/j.cej.2020.125451.
  6. X. Zhai, J. Li, S. Liu, X. Liu, D. Zhao, F. Wang, D. Zhang, G. Qin, W. Qin Opt. Mater. Express, 2013, 3(2), 270. doi: 10.1364/OME.3.000270.
  7. S. Hao, Y. Shang, D. Li, H. Ågren, C. Yang, G. Chen Nanoscale, 2017, 9(20), 6711. doi: 10.1039/c7nr01008g.
  8. A. Nadort, J. Zhao, E.M. Goldys Nanoscale, 2016, 8(27), 13099. doi: 10.1039/C5NR08477F.
  9. П.П. Федоров, С.В. Кузнецов, В.В. Воронов, И.В. Яроцкая, В.В. Арбенина Журнал неорганической химии, 2008, 53(11), 1802.
  10. A. Aebischer, M. Hostettler, J. Hauser, K. Krämer, T. Weber, H.U. Güdel, H.B. Bürgi Angew. Chem., Int. Ed. Engl., 2006, 45(17), 2802. doi: 10.1002/anie.200503966
  11. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, F. Li J. Am. Chem. Soc., 2011, 133(43), 17122. doi: 10.1021/ja207078s.
  12. X. Zhai, S. Liu, Y. Zhang, G. Qin, W. Qin J. Mater. Chem. C, 2014, 2(11), 2037. doi: 10.1039/C3TC31760A.
  13. B. Shen, S. Cheng, Y. Gu, D. Ni, Y. Gao, Q. Su, W. Feng, F. Li Nanoscale, 2017, 9(5), 1964. doi: 10.1039/C6NR07687D.
  14. П.А. Демина, К.В. Хайдуков, В.В. Рочева, Р.А. Акасов, А.Н. Генералова, Е.В. Хайдуков Фотоника, 2022, 16(8), 600. doi: 10.22184/1993-7296.FRos.2022.16.8.600.602.
  15. H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, C.H. Yan J. Am. Chem. Soc., 2006, 128(19), 6426. doi: 10.1021/ja060212h.
  16. R. Shi, X. Ling, X. Li, L. Zhang, M. Lu, X. Xie, L. Huang, W. Huang Nanoscale, 2017, 9(36), 13739. doi: 10.1039/C7NR04877G.
  17. M. Jalili, S. Basatani, M. Ghahari, E. Mohajerani Adv. Powder Technol., 2018, 29(4), 855. doi: 10.1016/j.apt.2018.01.002.
  18. S. Wilhelm, M. Kaiser, C. Würth, J. Heiland, C. Carrillo-Carrion, V. Muhr, O.S. Wolfbeis, W.J. Parak, U. Resch-Genger, T. Hirsch Nanoscale, 2015, 7(4), 1403. doi: 10.1039/C4NR05954A.
  19. W. You, D. Tu, W. Zheng, X. Shang, X. Song, S Zhou, Y. Liu, R. Li, X. Chen Nanoscale, 2018, 10(24), 11477. doi: 10.1039/C8NR03252A.
  20. X. Zhang, Z. Guo, X. Zhang, L. Gong, X. Dong, Y. Fu, Q. Wang, Z. Gu Sci. Rep., 2019, 9(1), 5212. doi: 10.1038/s41598-019-41482-w.
  21. A. Duvel, J. Bednarcik, V. Sepelak, P. Heitjans J. Phys. Chem. C, 2014, 118(13), 7117. doi: 10.1021/jp410018t.
  22. И.И. Бучинская, Н.А. Ивановская Кристаллография, 2020, 65(6), 972. doi: 10.31857/S0023476120060107
  23. D. Yuan, G.S. Yi, G.M. Chow J. Mater. Res., 2009, 24(6), 2042. doi: 10.1557/jmr.2009.0258.
  24. D.N. Patel, S.S. Sarkisov, A.M. Darwish, J. Ballato Opt. Express, 2016, 24(18), 21147. doi: 10.1364/OE.24.021147.
  25. A.V. Koshelev, V.V. Grebenev, N.A. Arkharova, A.A. Shiryaev, D.N. Karimov CrystEngComm, 2023, 25(33), 4745. doi: 10.1039/D3CE00642E.
  26. T. Laihinen, M. Lastusaari, L. Pihlgren, L.C. Rodrigues, J. Hölsä J. Therm. Anal., 2015, 121, 37. doi: 10.1007/s10973-015-4609-x.
  27. A. Grzechnik, P. Bouvier, M. Mezouar, M.D. Mathews, A.K. Tyagi, J. Köhler J. Solid State Chem., 2002, 165(1), 159. doi: 10.1006/jssc.2001.9525.
  28. A.V. Koshelev, N.A. Arkharova, K.V. Khaydukov, M.S. Seyed Dorraji, D.N. Karimov, V.V. Klechkovskaya Crystals, 2022, 12(5), 599. doi: 10.3390/cryst12050599.
  29. D. Zhang, Y. Dong, D. Li, H. Jia, W. Qin Nano Res., 2021, 14, 4760. doi: 10.1007/s12274-021-3420-1.
  30. Y. Li, Z. Zhou Chem. Phys. Lett., 2022, 790, 139344. doi: 10.1016/j.cplett.2022.139344.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кошелев А.В., Архарова Н.А., Каримов Д.Н., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).