Energy Migration in Upconversion Nanocrystals

Capa

Citar

Texto integral

Resumo

The processes of energy migration in upconvertion nanocrystals (UCNPs) governing the quantum efficiency under pulse excitation at 975 nm, which is a decisive factor for the widespread use of UCNPs, have been studied. The treatment by picosecond laser radiation leads to a controlled nanotransformation of a three-dimensional luminescent structure into a one-dimensional one through the formation of particles with a structure resembling a “medusa”.
The upconversion process in the one-dimensional structure occurs due to the energy migration between Yb3+, as in the case of nanoparticles. An approach is proposed for evaluating the efficiency of nonradiative energy transfer in a complex of UCNPs with a fluorophore. It takes into account the contribution of energy migration between sensitizer ions. The use of UCNPs in photothermal therapy is shown to be promising due to the large absorption cross section of the Yb3+ sensitizer. The cellular response to hyperthermia involving UCNPs is demonstrated by measuring heat shock protein expression.

Sobre autores

Alla Generalova

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS

Autor responsável pela correspondência
Email: angeneralova@gmail.com
Rússia, 16/10 Miklukho-Maklaya Str., Moscow, 117997, Russia

Roman Akasov

Federal Scientific Research Center «Crystallography and Photonics», RAS

Email: roman.akasov@gmail.com
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia

Polina Demina

Federal Scientific Research Center «Crystallography and Photonics», RAS

Email: Polidemina1207@yandex.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia

Kirill Khaydukov

Federal Scientific Research Center «Crystallography and Photonics», RAS

Email: haidukov_11@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia

Valeriia Kuzyaeva

Federal Scientific Research Center «Crystallography and Photonics», RAS

Email: kuzyaeva.valeriya@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia

Daria Solovyeva

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: d.solovieva@mail.ru
Rússia, 16/10 Miklukho-Maklaya Str., Moscow, 117997, Russia

Konstantin Mochalov

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: mochalov@mail.ru
Rússia, 16/10 Miklukho-Maklaya Str., Moscow, 117997, Russia

Vladimir Semchishen

Federal Scientific Research Center «Crystallography and Photonics», RAS

Email: Sem_47@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia

Evgeny Khaydukov

Federal Scientific Research Center «Crystallography and Photonics», RAS

Email: khaydukov@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia

Bibliografia

  1. L. Cheng, C. Wang, Z. Liu. Nanoscale, 2013, 5(1), 23. doi: 10.1039/c2nr32311g.
  2. D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, J. Lin. Chem. Soc. Rev., 2015, 44(6), 1416. doi: 10.1039/C4CS00155A.
  3. E.V. Khaydukov, V.A. Semchishen, V.N. Seminogov, V.I. Sokolov, A.P. Popov, A.V. Bykov, A.V. Nechaev, A.S. Akhmanov, V.Y. Panchenko, A.V. Zvyagin. Laser Phys. Lett., 2014, 11, 095602. doi: 10.1088/1612-2011/11/9/095602.
  4. J. Shan, Y. Ju. Nanotechnology, 2009, 20(27), 275603. doi: 10.1088/0957-4484/20/27/275603.
  5. A. Nadort, J. Zhao, E.M. Goldys. Nanoscale, 2016, 8(27), 13099. doi: 10.1039/c5nr08477f.
  6. A.N. Generalova, B.N. Chichkov, E.V. Khaydukov. Adv. Colloid Interface Sci., 2017, 245, 1. doi: 10.1016/j.cis.2017.05.006.
  7. C.T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, S. Andersson-Engels. Laser Photon., 2013, 7(5), 663. doi: 10.1002/lpor.201200052.
  8. M. Haase, H. Schäfer. Angew. Chemie Int. Ed., 2011, 50(26), 5808. doi: 10.1002/anie.201005159.
  9. D.T. Klier, M.U. Kumke. J. Mater. Chem. C, 2015, 3(42), 11228. doi: 10.1039/c5tc02218e.
  10. А.И. Бурштейн. ЖЭТФ, 1972, 62(5), 1695.
  11. J.G. Solé, L. Bausá, D. Jaque. An Introduction to the Optical Spectroscopy of Inorganic Solids, UK, Chichester: Wiley, 2005, 304 pp.
  12. P. Villanueva-Delgado, K.W. Krämer, R. Valiente. J. Phys. Chem. C, 2015, 119(41), 23648. doi: 10.1021/acs.jpcc.5b06770.
  13. S. Alyatkin, I. Asharchuk, K. Khaydukov, A. Nechaev, O. Lebedev, Y. Vainer, V. Semchishen, E. Khaydukov. Nanotechnology, 2017, 28(3), 035401. doi: 10.1088/1361-6528/28/3/035401.
  14. A.N. Generalova, V.A. Oleinikov, E.V. Khaydukov. Adv. Colloid Interface Sci., 2021, 297, 102543. doi: 10.1016/j.cis.2021.102543.
  15. L. Sajti, D.N. Karimov, V.V. Rocheva, N.A. Arkharova, K.V. Khaydukov, O.I. Lebedev, A.E. Voloshin, A.N. Generalova, B.N. Chichkov, E.V. Khaydukov. Nano Res., 2021, 14, 1141. doi: 10.1007/s12274-020-3163-4.
  16. S. Lu, J. Ke, X. Li, D. Tu, X. Chen. Aggregate, 2021, 2, e137. doi: 10.1002/agt2.137.
  17. X. Zou, M. Xu, W. Yuan, Q. Wang, Y. Shi, W. Feng, F. Li. Chem. Commun., 2016, 52(91), 13389. doi: 10.1039/C6CC07180E.
  18. A.K. Woźniak, G.F. Schröder, H. Grubmüller, C.A.M. Seidel, F. Oesterhelt. Proc. Natl. Acad. Sci., 2008, 105(47), 18337. doi: 10.1073/pnas.0800977105.
  19. T. Heyduk. Curr. Opin. Biotechnol., 2002, 13(4), 292. doi: 10.1016/s0958-1669(02)00332-4.
  20. C. Du, H. Wang, F. Yang, P.C. Hammel. Phys. Rev. B, 2014, 90(14), 140407. doi: 10.1103/PhysRevB.90.140407.
  21. K.E. Mochalov, A.E. Efimov, A. Bobrovsky, I.I. Agapov, A.A. Chistyakov, V.A. Oleinikov, A. Sukhanova, I. Nabiev. ACS Nano, 2013, 7(10), 8953. doi: 10.1021/nn403448p.
  22. A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix. Int. J. Hyperth., 2009, 25(7), 499. doi: 10.3109/02656730903287790.
  23. X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, F. Li. Nat. Commun., 2016, 7, 10437. doi: 10.1038/ncomms10437.
  24. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, Z. Liu. Angew. Chemie Int. Ed., 2011, 50(32), 7385. doi: 10.1002/anie.201101447.
  25. A. Gulzar, J. Xu, D. Yang, L. Xu, F. He, S. Gai, P. Yang. Dalt. Trans., 2018, 47(11), 3931. doi: 10.1039/c7dt04141a.
  26. J.R. Melamed, R.S. Edelstein, E.S. Day. ACS Nano, 2015, 9(1), 6. doi: 10.1021/acsnano.5b00021.
  27. J. Wu, T. Liu, Z. Rios, Q. Mei, X. Lin, S. Cao. Trends Pharmacol. Sci., 2017, 38(3), 226. doi: 10.1016/j.tips.2016.11.009.
  28. D. Lanneau, M. Brunet, E. Frisan, E. Solary, M. Fontenay, C. Garrido. J. Cell. Mol. Med., 2008, 12(3), 743. doi: 10.1111/j.1582-4934.2008.00273.x.
  29. I.V. Krylov, R.A. Akasov, V.V. Rocheva, N.V. Sholina, D.A. Khochenkov, A.V. Nechaev, N.V. Melnikova, A.A. Dmitriev, A.V. Ivanov, A.N. Generalova, E.V. Khaydukov. Front. Chem., 2020, 8, 895. doi: 10.3389/fchem.2020.00295.
  30. R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna. IEEE J. Quantum Electron., 1997, 33(7), 1049. doi: 10.1109/3.594865.
  31. A.A. Kaminskii, N.R. Agamalyan, G.A. Deniseneo, S.E. Sarkisov, P.P. Fedorov. Phys. Stat. Sol. (a), 1982, 70(2), 397. doi: 10.1002/pssa.2210700206.
  32. L. Esterowitz, F.J. Bartoli, R.E. Allen. J. Lumin., 1979, 21(1), 1. doi: 10.1016/0022-2313(79)90030-9.
  33. A.A.S. da Gama, G.F. de Sá, P. Porcher, P. Caro. J. Chem. Phys., 1981, 75(6), 2583. doi: 10.1063/1.442410.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Generalova A.N., Akasov R.A., Demina P.A., Khaydukov K.V., Kuzyaeva V.I., Solovyeva D.O., Mochalov K.E., Semchishen V.A., Khaydukov E.V., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).