Development of Active Dielectric Si-Er Nanoantennas

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In this work, theoretical and experimental studies on the development of sources emitting in the near infrared range based on active nanoantennas from silicon nanoparticles doped with erbium ions (Si–Er) are made. Numerical simulations have demonstrated an increase in the Purcell factor by two orders of magnitude for nanoparticles with electric or magnetic dipole resonance at the erbium radiation wavelength. The possibility of redistributing the radiation power of a point dipole source between a free space and a surface plasmon polariton by changing the height of the gap between the nanoparticle and the gold substrate was demonstrated. An experimental implementation of nanoantennas was also carried out. Due to femtosecond laser annealing, the crystallization of the Si–Er film and nanoparticles are made and the effect of laser-induced crystallization on their radiative properties is studied. Active nanoantennas have been developed and studied to control the emission of erbium ions in the near-IR range, representing resonant silicon nanocylinders doped with erbium. The results obtained are promising for the creation of nanophotonic telecommunication devices compatible with existing silicon fabrication technologies.

Авторлар туралы

Eduard Ageev

ITMO University

Хат алмасуға жауапты Автор.
Email: eduard.ageev@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia

Anna Dyatlovich

ITMO University

Email: anna.dyatlovich@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia

Vitaly Yaroshenko

ITMO University

Email: v.yaroshenko@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia

Artem Larin

ITMO University

Email: Artem.larin@metalab.ifmo.ru
9 Lomonosova Str., Saint Petersburg, 191002, Russia

Liliia Dvoretckaia

Alferov Saint Petersburg National Research Academic University, RAS

Email: Liliyabutler@gmail.com
Ресей, 8/3 Khlopin Str., Saint Petersburg, 194021, Russia

Alexey Mozharov

Alferov Saint Petersburg National Research Academic University, RAS

Email: mozharov@spbau.ru
Ресей, 8/3 Khlopin Str., Saint Petersburg, 194021, Russia

Ivan Mukhin

Higher School of Engineering Physics, Peter the Great St. Petersburg Polytechnic University

Email: muhin_is@spbstu.ru

Director

Ресей, 29 Polytekhnicheskaya Str.,Saint Petersburg, 195251, Russia

Dmitry Zuev

ITMO University

Email: d.zuev@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia

Әдебиет тізімі

  1. D.N. Basov, M.M. Fogler. Nat. Nanotechnol., 2017, 12(3), 187. doi: 10.1038/nnano.2016.283.
  2. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk. Science, 2016, 354(6314), aag2472. doi: 10.1126/science.aag2472.
  3. A. Faraon, P.E. Barclay, C. Santori, K.-M.C. Fu, R.G. Beausoleil. Nat. Photonics, 2011, 5(5), 301. doi: 10.1038/nphoton.2011.52.
  4. N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V.A. Turek, U.F. Keyser, J.J. Baumberg, O. Hess. ACS Photonics, 2018, 5(1), 186. doi: 10.1021/acsphotonics.7b00668.
  5. T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen. Nat. Commun., 2015, 6, 7788. doi: 10.1038/ncomms8788.
  6. H. Aouani, M. Rahmani, M. Navarro-Cía, S.A. Maier. Nat. Nanotechnol., 2014, 9(4), 290. doi: 10.1038/nnano.2014.27.
  7. N. Bonod, Y. Kivshar. Comptes Rendus Phys., 2020, 21(4–5), 425. doi: 10.5802/crphys.31.
  8. S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, P. Belov. Nano Lett., 2015, 15(9), 6187. doi: 10.1021/acs.nanolett.5b02534.
  9. J.S. Totero Gongora, A.E. Miroshnichenko, Y.S. Kivshar, A. Fratalocchi. Nat. Commun., 2017, 8(1), 15535. doi: 10.1038/ncomms15535.
  10. A.S. Zalogina, R.S. Savelev, E.V. Ushakova, G.P. Zograf, F.E. Komissarenko, V.A. Milichko, S.V. Makarov, D.A. Zuev, I.V. Shadrivov. Nanoscale, 2018, 10(18), 8721. doi: 10.1039/C7NR07953B.
  11. V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling. Nano Lett., 2017, 17(11), 6886. doi: 10.1021/acs.nanolett.7b03248.
  12. E.Y. Tiguntseva, G.P. Zograf, F.E. Komissarenko, D.A. Zuev, A.A. Zakhidov, S.V. Makarov, Y.S. Kivshar. Nano Lett., 2018, 18(2), 1185. doi: 10.1021/acs.nanolett.7b04727.
  13. J. Xiang, J. Chen, Q. Dai, S. Tie, S. Lan, A.E. Miroshnichenko. Phys. Rev. Appl., 2020, 13(1), 014003. doi: 10.1103/PhysRevApplied.13.014003.
  14. Y. Yang, H. Kang, C. Jung, J. Seong, N. Jeon, J. Kim, D.K. Oh, J. Park, H. Kim, J. Rho. ACS Photonics, 2023, 10(2), 307. doi: 10.1021/acsphotonics.2c01341.
  15. D.G. Baranov, R.S. Savelev, S.V. Li, A.E. Krasnok, A. Alù. Laser Photon. Rev., 2017, 11(3), 1600268. doi: 10.1002/lpor.201600268.
  16. T.H. Taminiau, S. Karaveli, N.F. Van Hulst, R. Zia. Nat. Commun., 2012, 3(1), 979. doi: 10.1038/ncomms1984.
  17. H. Nabika, S. Deki. J. Phys. Chem. B, 2003, 107(35), 9161. doi: 10.1021/jp035741b.
  18. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’Yanchuk, B.N. Chichkov. Phys. Rev. B, 2010, 82(4), 045404. doi: 10.1103/PhysRevB.82.045404.
  19. B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, H.T. Miyazaki. Nano Lett., 2016, 16(8), 5191. doi: 10.1021/acs.nanolett.6b02200.
  20. A.E. Krasnok, A.P. Slobozhanyuk, C.R. Simovski, S.A. Tretyakov, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, P.A. Belov. Sci. Rep., 2015, 5(1), 12956. doi: 10.1038/srep12956.
  21. M.A. Green. Sol. Energy Mater. Sol. Cells, 2008, 92(11), 1305. doi: 10.1016/j.solmat.2008.06.009.
  22. V. Yaroshenko, D. Zuev, A.B. Evlyukhin. Surfaces and Interfaces, 2022, 34, 102344. doi: 10.1016/j.surfin.2022.102344.
  23. A.V. Kabashin, A. Singh, M.T. Swihart, I.N. Zavestovskaya, P.N. Prasad. ACS Nano, 2019, 13(9), 9841. doi: 10.1021/acsnano.9b04610.
  24. M.A. van de Haar, J. van de Groep, B.J.M. Brenny, A. Polman. Opt. Express, 2016, 24(3), 2047. doi: 10.1364/OE.24.002047.
  25. I. Staude, J. Schilling. Nat. Photonics, 2017, 11(5), 274. doi: 10.1038/nphoton.2017.39.
  26. D.M. Zhigunov, A.B. Evlyukhin, A.S. Shalin, U. Zywietz, B.N. Chichkov. ACS Photonics, 2018, 5(3), 977. doi: 10.1021/acsphotonics.7b01275.
  27. C. Zaza, I.L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J.J. Sáenz, S.A. Maier, F.D. Stefani. ACS Photonics, 2019, 6(4), 815. doi: 10.1021/acsphotonics.8b01619.
  28. M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, M. Abbarchi. Nanoscale, 2016, 8(5), 2844. doi: 10.1039/C5NR07597A.
  29. S. Syubaev, E. Mitsai, S. Starikov, A. Kuchmizhak. Opt. Lett., 2021, 46(10), 2304. doi: 10.1364/OL.425809.
  30. K. Bronnikov, A. Dostovalov, A. Cherepakhin, E. Mitsai, A. Nepomniaschiy, S.A. Kulinich, A. Zhizhchenko, A. Kuchmizhak. Materials (Basel), 2020, 13(22), 5296. doi: 10.3390/ma13225296.
  31. A.O. Larin, E.I. Ageev, L.N. Dvoretckaia, A.M. Mozharov, I.S. Mukhin, D.A. Zuev. JETP Lett., 2021, 114(11), 681. doi: 10.1134/S0021364021230090.
  32. A.O. Larin, L.N. Dvoretckaia, A.M. Mozharov, I.S. Mukhin, A.B. Cherepakhin, I.I. Shishkin, E.I. Ageev, D.A. Zuev. Adv. Mater., 2021, 33(16), 2005886. doi: 10.1002/adma.202005886.
  33. A. Polman. Phys. B Condens. Matter, 2001, 300(1), 78. doi: 10.1016/S0921-4526(01)00573-7.
  34. Y. Nagasaki, M. Suzuki, I. Hotta, J. Takahara. ACS Photonics, 2018, 5(4), 1460. doi: 10.1021/acsphotonics.7b01467.
  35. A. Prnová, J. Valúchová, N. Mutlu, M. Parchovianský, R. Klement, A. Plško, D. Galusek. J. Therm. Anal. Calorim., 2020, 142(1), 129. doi: 10.1007/s10973-020-09816-3.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Ageev E.I., Dyatlovich A.A., Yaroshenko V.V., Larin A.O., Dvoretckaia L.N., Mozharov A.M., Mukhin I.S., Zuev D.A., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).