Succinate-receptor system of bone and cartilage tissue in patients with metabolic phenotype of osteoarthritis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Introduction. Currently, osteoarthritis (OA) has been identified as a polyetiological disease, where several phenotypes have been identified based on the leading frequency. Obviously, each clinical phenotype corresponds only to its fundamental changes on the part of various organs and systems. Until recently, special attention was paid to the study of metabolic processes in osteoarthritis (OA) and was paid to the state of the cartilage, but more and more interest was focused on the biochemistry of the subchondral bone, its microarchitectonics and signal function.

Aid. To study the features of the manifestation of the succinate-receptor system of bone and cartilage tissue in patients with the metabolic phenotype of osteoarthritis.

Material and methods. 42 patients took part in the study and were divided into 2 groups: 1 group – patients without articular disease, normal body mass index; 2 group – patients with metabolic phenotype of OA. The subjects were collected complaints, anamnesis, as well as general clinical and orthopedic examination. The levels of succinate, succinate receptor (SUCNR1) and succinate dehydrogenase (SDH) are measured in bone and cartilage tissue homogenates.

Results. In the 2 group, an increase in SUCNR1 expression was detected in all studied areas of the joint in comparison with the 1 group. In the 2 group, the differences were tissue-specific in the distribution of SUCNR1 with a predominant increase in the amount of the receptor in the subchondral bone compared to the loaded (p=0.031) and non-loaded zone of cartilage (p=0.001). In the 1 group, the studied areas of cartilage and bone did not differ in the amount of SUCNR1 from each other. In the group of patients with the metabolic phenotype of OA, an increase in mitochondrial succinate was found both in the subchondral bone tissue and in different zones of cartilage compared to the 1 group. The final indicators of SDH activity in the mitochondria of the studied joint zones that we obtained turned out to be low in both groups, however, relatively high enzyme activity was observed in the subchondral zone of the bone of the group of metabolic phenotype of OA.

Conclusion. In patients with the metabolic phenotype of OA, high expression of SUCNR1 in joint tissues is observed, which is tissue-specific with a predominant increase in the amount of SUCNR1 in the subchondral bone. We found higher levels of succinate in the subchondral bone and cartilaginous areas of joints in patients with the metabolic phenotype of OA and suggest that the succinate-SUCNR1 interaction in affected joints in OA is adaptive in nature.

Толық мәтін

##article.viewOnOriginalSite##

Авторлар туралы

D. Shodiev

Ryazan State Medical University named after acad. I.P. Pavlov

Хат алмасуға жауапты Автор.
Email: shodiev.dima@yandex.ru
ORCID iD: 0000-0002-4530-2964
SPIN-код: 3556-4398

Post-graduate Student

Ресей, Ryazan

V. Zvyagina

Ryazan State Medical University named after acad. I.P. Pavlov

Email: vizvyagina@yandex.ru
ORCID iD: 0000-0003-2800-5789
SPIN-код: 7553-8641
Scopus Author ID: 57189726173

Dr.Sc. (Med.), Professor of Department of Biochemistry

Ресей, Ryazan

M. Ryabova

Ryazan State Medical University named after acad. I.P. Pavlov

Email: rmn62doc@yandex.ru
ORCID iD: 0000-0002-1707-2567
SPIN-код: 2077-3173

Ph.D. (Med.), Associate Professor of Department of General Surgery, Traumatology and Orthopedics

Ресей, Ryazan

Y. Marsyanova

Ryazan State Medical University named after acad. I.P. Pavlov

Email: yuliyamarsyanova@yahoo.com
ORCID iD: 0000-0003-4948-4504
SPIN-код: 4075-3169

Assistant, Department of Biochemistry

Ресей, Ryazan

Әдебиет тізімі

  1. Каминский А.В., Матвеева Е.Л., Гасанова А.Г. и др. Анализ биохимических показателей сыворотки крови у больных с ревизионным эндопротезированием тазобедренного сустава и нарушением углеводного обмена. Наука молодых (Eruditio Juvenium). 2023;11(1):5–14. https://doi.org/10.23888/HMJ20231115-14. [Kaminskiy A.V., Matveyeva E.L., Gasanova A.G. et al. Analysis of Biochemical Parameters of Blood Serum in Patients with Revision Hip Arthroplasty and Disorder of Carbohydrate Metabolism. Science of the young (Eruditio Juvenium). 2023;11(1):5–14. https://doi.org/10.23888/HMJ20231115-14. (In Russ.)]
  2. van Diepen J.A., Robben J.H., Hooiveld G.J. et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia. 2017;60(7):1304–1313. doi: 10.1007/s00125-017-4261-z.
  3. Бельских Э.С., Урясьев О.М., Звягина В.И., Фалетрова С.В. Сукцинат и сукцинатдегидрогеназа моно-ядерных лейкоцитов крови как маркеры адаптации митохондрий к гипоксии у больных при обострении хронической обструктивной болезни легких. Российский медико-биологический вестник им. академика И.П. Павлова. 2020;28(1):13–20. doi: 10.23888/PAVLOVJ202028113-20. [Belskikh E.S., Uryasiev O.M., Zvyagina V.I., Faletrova S.V. Succinate and succinate dehydrogenase of mononuclear blood leukocytes as markers of adaptation of mitochondria to hypoxia in patients with exacerbation of chronic obstructive pulmonary disease. I.P. Pavlov Russian Medical Biological Herald. 2020;28(1)13–20. doi: 10.23888/PAVLOVJ202028113-20. (In Russ.)].
  4. Tannahill G.M., Curtis A.M., Adamik J. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–242. doi: 10.1038/nature11986.
  5. Li Y., Zheng J.Y., Liu J.Q. et al. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis. Front Immunol. 2016;7:532. doi: 10.3389/fimmu.2016.00532.
  6. Li Y., Liu Y., Wang C. et al. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1α/VEGF axis. Free Radic Biol Med. 2018;126:1–14. doi: 10.1016/j.freeradbiomed.2018.07.009.
  7. Su W., Liu G., Liu X. et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight. 2020;5(8):e135446. doi: 10.1172/jci.insight.135446.
  8. Deen P.M., Robben J.H. Succinate receptors in the kidney. J Am Soc Nephrol. 2011;22(8):1416–1422. doi: 10.1681/ASN.2010050481.
  9. Macias-Ceja D.C., Ortiz-Masiá D., Salvador P. et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol. 2019;12(1):178–187. doi: 10.1038/s41385-018-0087-3.
  10. Lukyanova L.D., Kirova Y.I., Germanova E.L. Specific Fea-tures of Immediate Expression of Succinate-Dependent Re-ceptor GPR91 in Tissues during Hypoxia. Bull Exp Biol Med. 2016;160(6):742–747. doi: 10.1007/s10517-016-3299-0.
  11. Keiran N., Ceperuelo-Mallafré V., Calvo E. et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol. 2019;20(5):581–592. doi: 10.1038/s41590-019-0372-7.
  12. Huang Z., He Z., Kong Y.et al. Insight into osteoarthritis through integrative analysis of metabolomics and transcriptomics. Clin Chim Acta. 2020;510:323–329. doi: 10.1016/j.cca.2020.07.010.
  13. Gavriilidis C., Miwa S., von Zglinicki T. et al. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 2013;65(2):378–387. doi: 10.1002/art.37782.
  14. Rushton M.D., Reynard L.N., Barter M.J. et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 2014;66(9):2450–2460. doi: 10.1002/art.38713.
  15. Bianco D., Todorov A., Čengić T. et al. Alterations of Subchondral Bone Progenitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Phenotype. Int J Mol Sci. 2018;19(2):475. doi: 10.3390/ijms19020475.
  16. Мартиросов Э.Г., Николаев Д.В., Руднев С.Г. Технологии и методы определения состава тела человека. М.: Наука, 2006; 248 с. [Martirosov E.G., Nikolaev D.V., Rudnev S.G. Technologies and methods for determining the composition of the human body. M.: Nauka, 2006: 248 p. (In Russ)].
  17. Gallagher D., Heymsfield S.B., Heo M., et al. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694–701. doi: 10.1093/ajcn/72.3.694.
  18. Zhang W., Doherty M., Peat G. et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010 ;69(3):483–489. doi: 10.1136/ard.2009.113100.
  19. Верткин А.Л., Толстов С.Н. и др. Консенсус экспертов по междисциплинарному подходу к ведению, диагностике и лечению больных с метаболическим синдромом. Кардиоваскулярная терапия и профилактика. 2013;12(6):41–82. [Vertkin A.L., Tolstov S.N. I dr.Experts’ consensus on the interdisciplinary approach towards the managmeht? Diag-nostics, and treatment of patients with metabolic syndrome. Cardiovascular Therapy and Prevention. 2013;12(6):41–82. (In Russ.)].
  20. Методы биохимических исследований (липидный и энергетический обмен): учебное пособие / под ред. М.И. Прохоровой. Л.: Издательство 231 Ленинградского университета, 1982,327 с. [Methods of biochemical research (lipid and energy metabolism): textbook / edited by M.I. Prokhorova. L.: Publishing House 231 of Leningrad University, 1982. 327 p. (In Russ)]
  21. Fernández-Veledo S., Ceperuelo-Mallafré V., Vendrell J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis. Trends Endocrinol Metab. 2021;32(9):680–692. doi: 10.1016/j.tem.2021.06.003.
  22. Guo Y., Xu F., Thomas S.C. et al. Targeting the succinate receptor effectively inhibits periodontitis. Cell Rep. 2022;40(12):111389. doi: 10.1016/j.celrep.2022.111389.
  23. Littlewood-Evans A., Sarret S., Apfel V. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016 Aug 22;213(9):1655–1662. doi: 10.1084/jem.20160061.
  24. Chouchani E.T., Pell V.R., Gaude E. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. doi: 10.1038/nature13909.
  25. Liu H., Li Z., Cao Y. et al. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: A possible pathway for osteoarthritis pathology at the subcellular level. Mol Med Rep. 2019;20(4):3308–3316. doi: 10.3892/mmr.2019.10559.
  26. Maneiro E., Martín M.A., de Andres M.C., et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 2003;48(3):700–708. doi: 10.1002/art.10837.
  27. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. 1989 Mar 25;1(8639):637–639. doi: 10.1016/s0140-6736(89)92143-0.
  28. Dröse S., Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–169. doi: 10.1007/978-1-4614-3573-0_6.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Amount of succinate receptor (SUCNR1) in homogenates of joint tissues in patients of groups 1 and 2, ng/mL: k, subchondral bone; hn, cartilage of loaded zone; hnn, cartilage of unloaded zone (* - pk1-2<0.01; ** - phn1-2<0.01; *** - phn1-2<0.01)

Жүктеу (20KB)
3. Fig. 2. Amount of succinate receptor SUCNR1 in the homogenates of joint tissues in group 2 patients, ng/mL: k - subchondral bone; hn - cartilage of the loaded zone; hn - cartilage of the unloaded zone (* - rxn-c<0.01; ** - rxn-c<0.01)

Жүктеу (16KB)
4. Fig. 3. Succinate content in mitochondria of joint tissue homogenates from patients of groups 1 and 2, μmol/mL: k - subchondral bone; hn - cartilage of the loaded zone; hnn - cartilage of the unloaded zone (* - pk1-2<0.01; ** - phn1-2<0.01; *** - phn1-2<0.01).

Жүктеу (22KB)
5. Fig 4. Correlation analysis of subchondral bone SUCNR1 level and body fat percentage in patients with metabolic phenotype of OA

Жүктеу (58KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».