Immunofluorescence diagnosis and analysis of samples of its images in autoimmune pemphigus


Cite item

Full Text

Abstract

Autoimmune Pemphigus is a group of autoimmune bullous dermatosis characterized by intraepithelial blister formation and the presence of specific IgG-antibodies to the antigens of the intercellular bonding substance (MCC) stratified squamous epithelium. Specific immunomorphological picture (fixing IgG in MCC epidermis) allows to diagnose this bullous dermatosis. However, in some cases, during the use of this diagnostic method visualization of specific features is difficult because of the use of mild and/or non-uniform specific immunohistochemical reaction that prevents to diagnose pemphigus with absolute precision. The analysis of immunofluorescence diagnosis in autoimmune pemphigus was performed. Skin tissue image analysis algorithm is proposed. The algorithm performs image quality enhancement and detects inter-cell structures that are typical for pemphigus assessment. The algorithm consists of alignment illumination, median filtering, Gaussian filter processing, ridge detection using Hessian, image binarization, separation, for a ridge map, connected components and removing components with a small radius. In cases of doubt this allows to differentiate and diagnose autoimmune pemphigus. In addition, a clear visualization of character (granular or linear) fixing the immunoglobulin class G in the intercellular spaces of the epidermis increases the accuracy of the prediction of further disease progression (favorable or torpid) providing timely and appropriate management of the patient prescribing pathogenetic treatment regimens. This work emphasizes importance of introducing the modern computer methods of medical images, that allow significantly to improve the methods of diagnosis of human diseases, including autoimmune bullous dermatosis.

About the authors

A. A Dovganich

Lomonosov Moscow State University

Laboratory of mathematical methods of image processing, Faculty of Computational Mathematics and Cybernetics 119991, Moscow, Russia

A. V Nasonov

Lomonosov Moscow State University

Laboratory of mathematical methods of image processing, Faculty of Computational Mathematics and Cybernetics 119991, Moscow, Russia

Andrey S. Krylov

Lomonosov Moscow State University

Email: kryl@cs.msu.ru
Doctor of Phys.-Math. Sciences, Professor, head of the laboratory of mathematical methods of image processing, Faculty of Computational Mathematics and Cybernetics 119991, Moscow, Russia

N. V Makhneva

Moscow Regional Research and Clinical Institute

Department of Dermato-venereology and dermato-oncology 129110, Moscow, Russia

References

  1. Amagai M. Pemphigus family of diseases. In: Gaspari A.A., Tyring S.K., eds. Clinical and basic immunodermatology. London: Springer-Verlag London Limited; 2008: 739-50.
  2. Махнева Н.В., Белецкая Л.В. Иммунопатологические аспекты аутоиммунных буллезных дерматозов. Saarbrucken, Germany: Palmarium Academic Publishing; 2012.
  3. Махнева Н.В., Белецкая Л.В. Иммунофлюоресценция в клинике аутоиммунных буллезных дерматозов. М.: Академия Естествознания; 2010.
  4. Махнева Н.В., Давиденко Е.Б., Белецкая Л.В. Способ прогнозирования характера течения аутоиммунной пузырчатки. Патент на изобретение № 2429482 от 20.09.11.
  5. Махнева Н.В., Давиденко Е.Б., Белецкая Л.В. Прогнозирование течения аутоиммунной пузырчатки на основе оценки характера фиксации иммуноглобулина класса G в межклеточной связывающей субстанции эпидермиса. Методические рекомендации №38. М.: Департамент здравоохранения г. Москвы; 2013.
  6. Лукин А.С. Введение в цифровую обработку сигналов. Учебное пособие факультета вычислительной математики и кибернетики МГУ. М.: МГУ; 2007.
  7. Brownrigg D.R.K. The weighted median filter. Communications of the ACM. 1984; 27(8): 807-18. doi: 10.1145/358198.358222.
  8. Eberly D. Ridges in image and data analysis. Computational imaging and vision. vol. 7. Dordrecht: Springer Science and Business Media; 1996.
  9. Eberly D., Gardner R., Morse B., Pizer S., Scharlach C. Ridges for image analysis. J. Math. Imaging Vis. 1994; 4(4): 353-73.
  10. Eberly D.H. Fast algorithms for ridge construction. Photonics for Industrial Applications. International Society for Optics and Photonics. Proceedings SPIE. Vision Geometry III. vol. 2356. 1995: 231-42. https://scholar.google.ru/scholar?q=Eberly+D.+H.%2C+Fast+algorithms+for+ridge+construction%2C+In+Photonics+for+Industrial+Applications.+Internation
  11. Shapiro L.G., Stockman G.C. Computer Vision. Prentice Hall; 2001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».