Интерлейкин-7 способствует переносу ВИЧ-1 на цервиковагиналь-ную ткань in vivo


Цитировать

Полный текст

Аннотация

В большинстве случаев ВИЧ-1-инфекция передается женщинам во время вагинального полового акта, когда содержащая вирус семенная жидкость попадает на слизистую оболочку шейки матки и влагалища. Семенная жидкость не только переносит ВИЧ-1, но и содержит большое количество биологических факторов, в частности цитокинов, которые могут влиять на передачу ВИЧ-1. Одним из наиболее распространенных цитокинов в семенной жидкости здоровых мужчин является интерлейкин-7 (ИЛ-7), концентрация которого значительно увеличена в семенной жидкости ВИЧ-1-инфицированных лиц. В данной работе мы исследовали потенциальную роль ИЛ-7 в передаче ВИЧ-1 вагинальным путем в системе ex vivo цервиковагинальной ткани человека. Мы смоделировали ситуацию in vivo путем нанесения на цервиковагинальную ткань ВИЧ-1 в сочетании с ИЛ-7, концентрации сравнимой с его концентрацией, в семенной жидкости ВИЧ-1-инфицированных лиц. Мы обнаружили, что ИЛ-7 в значительной степени усилил репликацию вируса в цервиковагинальной ткани, инфицированной ex vivo. Кроме того, мы наблюдали усиление репликации ВИЧ-1 в эксплантатах лимфоидной ткани. Анализ Т-клеток, изолированных из инфицированных тканей, показал, что ИЛ-7 сокращает истощение популяции Т-клеток CD4 +, предотвращая апоптоз, как свидетельствовало снижение количества клеток с экспрессией апоптотического маркера APO2.7 и усиление экспрессии антиапоптотического белка - B-клеточной лимфомы-2 (Bcl-2). Помимо этого, ИЛ-7 увеличивал фракцию делящихся CD4 + Т-клеток, о чем свидетельствовало окрашивание ядерного фактора Ki-67. Высокий уровень содержания ИЛ-7 в семенной жидкости in vivo может влиять на выживание исходного пула ВИЧ-1-инфицированных клеток в слизистой оболочке шейки матки и влагалища на начальных стадиях инфицирования и способствовать локальному размножению и распространению ВИЧ-инфекции.

Об авторах

Андреа Интроини

Национальный институт детского здоровья и развития человека им. Юнис Кеннеди-Шривер; Миланский университет

Факультет биомедицинских наук и технологий Бетесда, шт. Мэриленд, США; Милан, Италия

Кристоф Ванпуй

Национальный институт детского здоровья и развития человека им. Юнис Кеннеди-Шривер

Бетесда, шт. Мэриленд, США

Андреа Лиско

Национальный институт детского здоровья и развития человека им. Юнис Кеннеди-Шривер

Бетесда, шт. Мэриленд, США

Жан-Шарль -C Гривель

Национальный институт детского здоровья и развития человека им. Юнис Кеннеди-Шривер

Бетесда, шт. Мэриленд, США

Леонид Борисович Марголис

Национальный институт детского здоровья и развития человека им. Юнис Кеннеди-Шривер

Email: margolis@helix.nih.gov
Бетесда, шт. Мэриленд, США

Список литературы

  1. World Health Organization (2010) Global Report: UNAIDS Report on the global AIDS epidemic. Available: http://www.unaids. org/globalreport/globa^report.htm.
  2. Doncel G.F., Joseph T., Thurman A.R. Role of semen in HIV-1 transmission: inhibitor or facilitator? Am. J. Reprod. Immunol. 2011; 65: 292-301.
  3. Sabatte J., Lenicov F.R., Cabrini M., Rodriguez C.R., Ostrowski M. et al. The role of semen in sexual transmission of HIV: beyond a carrier for virus particles. Microbes Infec. 2011; 13: 977-82.
  4. Munch J., Rucker E., Standker L., Adermann K., Goffinet C. et al. Semenderived amyloid fibrils drastically enhance HIV infection. Cell. 2007; 131: 1059-71.
  5. Roan N.R., Muller J.A., Liu H., Chu S., Arnold F. et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe. 2011; 10: 541-50.
  6. Martellini J.A., Cole A.L., Venkataraman N., Quinn G.A., Svoboda P. et al. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J. 2009; 23: 3609-18.
  7. Politch J.A., Tucker L., Bowman F.P., Anderson D.J. Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum. Reprod. 2007; 22: 2928-35.
  8. Berlier W., Cremel M., Hamzeh H., Levy R., Lucht F et al. Seminal plasma promotes the attraction of Langerhans cells via the secretion of CCL20 by vaginal epithelial cells: involvement in the sexual transmission of HIV. Hum. Reprod. 2006; 21: 1135-42.
  9. Kafka J.K., Sheth P.M., Nazli A., Osborne B.J., Kovacs C. et al. Endometrial epithelial cell response to semen from HIV-infected men during different stages of infection is distinct and can drive HIV-1-long terminal repeat. AIDS. 2012; 26: 27-36.
  10. Li Q., Estes J.D., Schlievert P.M., Duan L., Brosnahan A.J. et al. Glycerol monolaurate prevents mucosal SIV. transmission. Nature. 2009; 458: 1034-8.
  11. Ochiel D.O., Ochsenbauer C., Kappes J.C., Ghosh M., Fahey J.V. et al. Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells. PloS One. 2010; 5: e14306.
  12. Anderson J.A., Ping L.H., Dibben O., Jabara C.B., Arney L. et al. HIV-1 populations in semen arise through multiple mechanisms. PLoS Pathog. 2010; 6: є1001053.
  13. Lisco A., Munawwar A., Introini A., Vanpouille C., Saba E. et al. Semen of HIV-1-infected individuals: local shedding of herpesviruses and reprogrammed cytokine network. J. Infect. Dis. 2012; 205: 97-105.
  14. Jiang Q., Li W.Q., Aiello F.B., Mazzucchelli R., Asefa B. et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 2005; 16: 513-33.
  15. Mackall C.L., Fry T.J., Gress R.E. Harnessing the biology of IL-7 for therapeutic application. Nature Rev. Immunol. 2011; 11: 330-42.
  16. Levy Y., Sereti I., Tambussi G., Routy J.P., Lelievre J.D. et al. Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: Results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin. Infect. Dis. 2012; 55: 291-300.
  17. Sereti I., Dunham R.M., Spritzler J., Aga E., Proschan M.A. et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood. 2009; 113: 6304-14.
  18. Gougeon M.L., Chiodi F. Impact of gamma-chain cytokines on T cell homeostasis in HIV-1 infection: therapeutic implications. J. Intern. Med. 2010; 267: 502-14.
  19. Sieg S.F. Interleukin-7 Biology in HIV Disease and the Path to Immune Reconstitution. Curr. HIV Res. 2012; 10: 341-7.
  20. Vernazza P.L., Eron J.J., Fiscus S.A. Sensitive method for the detection of infectious HIV in semen of seropositive individuals. J. Virol. Meth. 1996; 56: 33-40.
  21. Allen R.D., Roberts T.K. Role of spermine in the cytotoxic effects of seminal plasma. Am. J. Reprod. Immunol. Microbiol. 1987; 13: 4-8.
  22. Okamoto M., Byrn R., Eyre R.C., Mullen T., Church P. et al. Seminal plasma induces programmed cell death in cultured peripheral blood mononuclear cells. AIDS Res. Hum. Retrovirus. 2002; 18: 797-803.
  23. Karlsson I., Grivel J.C., Chen S.S., Karlsson A., Albert J. et al. Differential pathogenesis of primary CCR5-using human immunodeficiency virus type 1 isolates in ex vivo human lymphoid tissue. J. Virol. 2005; 79: 11151-60.
  24. Saba E., Grivel J.C., Vanpouille C., Brichacek B., Fitzgerald W. et al. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol. 2010; 3: 280-90.
  25. Grivel J.C., Biancotto A., Ito Y., Lima R.G., Margolis L.B. Bystander CD4+ T lymphocytes survive in HIV-infected human lymphoid tissue. AIDS Res. Hum. Retrovirus. 2003; 19: 211-6.
  26. Grivel J.C., Malkevitch N., Margolis L. Human immunodeficiency virus type 1 induces apoptosis in CD4(+) but not in CD8(+) T cells in ex vivo-infected human lymphoid tissue. J. Virol. 2000; 74: 8077-84.
  27. Guillemard E., Nugeyre M.T., Chene L., Schmitt N., Jacquemot C. et al. Interleukin-7 and infection itself by human immunodeficiency virus 1 favor virus persistence in mature CD4(+)CD8(2) CD3(+) thymocytes through sustained induction of Bcl-2. Blood. 2001; 98: 2166-74.
  28. Haase A.T. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010; 464: 217-23.
  29. Khaled A.R., Durum S.K. Lymphocide: cytokines and the control of lymphoid homeostasis. Nature Rev. Immunol. 2002; 2: 817-30.
  30. Kim K., Lee C.K., Sayers T.J., Muegge K., Durum S.K. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol. 1998; 160: 5735-41.
  31. Sprent J., Surh C.D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nature Immunol. 2011; 12: 478-84.
  32. Di Carlo E., D’Antuono T., Pompa P., Giuliani R., Rosini S. et al. The lack of epithelial interleukin-7 and BAFF/BLyS gene expression in prostate cancer as a possible mechanism of tumor escape from immunosurveillance. Clin. Cancer Res. 2009; 15: 2979-87.
  33. Fichorova R.N., Anderson D.J. Differential expression of immunobiological mediators by immortalized human cervical and vaginal epithelial cells. Biol. Reprod. 1999; 60: 508-14.
  34. Zeng M., Southern P.J., Reilly C.S., Beilman G.J., Chipman J.G. et al. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012; 8: e1002437.
  35. Keele B.F., Giorgi E.E., Salazar-Gonzalez J.F., Decker J.M., Pham K.T. et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. U S A. 2008; 105: 7552-7.
  36. Regoes R.R., Bonhoeffer S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol. 2005; 13: 269-77.
  37. Smithgall M.D., Wong J.G., Critchett K.E., Haffar O.K. IL-7 up-regulates HIV-1 replication in naturally infected peripheral blood mononuclear cells. J. Immunol. 1996; 156: 2324-30.
  38. Unutmaz D., KewalRamani V.N., Marmon S., Littman D.R. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 1999; 189: 1735-46.
  39. Bosque A., Famiglietti M., Weyrich A.S., Goulston C., Planelles V. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog. 2011; 7: e1002288.
  40. Wang F.X., Xu Y., Sullivan J., Souder E., Argyris E.G. et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J. Clin. Invest. 2005; 115: 128-37.
  41. Vassena L., Proschan M., Fauci A.S., Lusso P. Interleukin 7 reduces the levels of spontaneous apoptosis in CD4+ and CD8+ T cells from HIV-1-infected individuals. Proc. NatlAcad. Sci. U S A. 2007; 104: 2355-60.
  42. Vassena L., Miao H., Cimbro R., Malnati M.S., Cassina G. et al. Treatment with IL-7 prevents the decline of circulating CD4+ T cells during the acute phase of SIV infection in rhesus macaques. PLoS Pathog. 2012; 8: e1002636.
  43. Armitage R.J., Namen A.E., Sassenfeld H.M., Grabstein K.H. Regulation of human T cell proliferation by IL-7. J. Immunol. 1990; 144: 938-41.
  44. Nugeyre M.T., Monceaux V., Beq S., Cumont M.C., Ho Tsong Fang R. et al. IL-7 stimulates T cell renewal without increasing viral replication in simian immunodeficiency virus-infected macaques. J. Immunol. 2003; 171: 4447-53.
  45. Steffens C.M., Managlia E.Z., Landay A., Al-Harthi L. Interleukin-7-treated naive T cells can be productively infected by T-cell-adapted and primary isolates of human immunodeficiency virus 1. Blood. 2002; 99: 3310-18.
  46. Llano A., Barretina J., Gutierrez A., Blanco J., Cabrera C. et al. Interleukin-7 in plasma correlates with CD4 T-cell depletion and may be associated with emergence of syncytium-inducing variants in human immunodeficiency virus type 1-positive individuals. J. Virol. 2001; 75: 10319-25.
  47. Schmitt N., Chene L., Boutolleau D., Nugeyre M.T., Guil-lemard E. et al. Positive regulation of CXCR4 expression and signaling by interleukin-7 in CD4+ mature thymocytes correlates with their capacity to favor human immunodeficiency X4 virus replication. J. Virol. 2003; 77: 5784-93.
  48. Anderson D.J., Politch J.A., Nadolski A.M., Blaskewicz C.D., Pudney J. et al. Targeting Trojan Horse leukocytes for HIV prevention. AIDS. 2010; 24: 163-87.
  49. Grivel J.C., Margolis L. Use of human tissue explants to study human infectious agents. Nat. Protoc. 2009; 4: 256-69.
  50. Sullivan P.S., Do A.N., Ellenberger D., Pau C.P., Paul S. et al. Human immunodeficiency virus (HIV) subtype surveillance of African-born persons at risk for group O and group N HIV infections in the United States. J. Infect. Dis. 2000; 181: 463-9.
  51. Chen M., Singh M.K., Balachandran R., Gupta P. Isolation and characterization of two divergent infectious molecular clones of HIV type 1 longitudinally obtained from a seropositive patient by a progressive amplification procedure. AIDS Res. Hum. Retrovirus. 1997; 13: 743-50.
  52. Biancotto A., Brichacek B., Chen S.S., Fitzgerald W., Lisco A. et al. A highly sensitive and dynamic immunofluorescent cytometric bead assay for the detection of HIV-1 p24. J. Virol. Meth. 2009; 157: 98-101.

© ООО "Эко-вектор", 2013


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах