Normalization Through Invariants in n-dimensional Kepler Problems
- 作者: Meyer K.R.1, Palacián J.F.2, Yanguas P.2
- 
							隶属关系: 
							- Department of Mathematical Sciences
- Departamento de Estadística, Informática y Matemáticas and Institute for Advanced Materials
 
- 期: 卷 23, 编号 4 (2018)
- 页面: 389-417
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219005
- DOI: https://doi.org/10.1134/S1560354718040032
- ID: 219005
如何引用文章
详细
We present a procedure for the normalization of perturbed Keplerian problems in n dimensions based on Moser regularization of the Kepler problem and the invariants associated to the reduction process. The approach allows us not only to circumvent the problems introduced by certain classical variables used in the normalization of this kind of problems, but also to do both the normalization and reduction in one step. The technique is introduced for any dimensions and is illustrated for n = 2, 3 by relating Moser coordinates with Delaunay-like variables. The theory is applied to the spatial circular restricted three-body problem for the study of the existence of periodic and quasi-periodic solutions of rectilinear type.
作者简介
Kenneth Meyer
Department of Mathematical Sciences
							编辑信件的主要联系方式.
							Email: ken.meyer@uc.edu
				                					                																			                												                	美国, 							Cincinnati, Ohio, 45221-0025						
Jesús Palacián
Departamento de Estadística, Informática y Matemáticas and Institute for Advanced Materials
														Email: ken.meyer@uc.edu
				                					                																			                												                	西班牙, 							Pamplona, 31006						
Patricia Yanguas
Departamento de Estadística, Informática y Matemáticas and Institute for Advanced Materials
														Email: ken.meyer@uc.edu
				                					                																			                												                	西班牙, 							Pamplona, 31006						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					