Equivariant Classification of bm-symplectic Surfaces
- 作者: Miranda E.1,2, Planas A.1
-
隶属关系:
- BGSMath Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC
- IMCCE, CNRS-UMR8028, Observatoire de Paris
- 期: 卷 23, 编号 4 (2018)
- 页面: 355-371
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218997
- DOI: https://doi.org/10.1134/S1560354718040019
- ID: 218997
如何引用文章
详细
Inspired by Arnold’s classification of local Poisson structures [1] in the plane using the hierarchy of singularities of smooth functions, we consider the problem of global classification of Poisson structures on surfaces. Among the wide class of Poisson structures, we consider the class of bm-Poisson structures which can be also visualized using differential forms with singularities as bm-symplectic structures. In this paper we extend the classification scheme in [24] for bm-symplectic surfaces to the equivariant setting. When the compact group is the group of deck-transformations of an orientable covering, this yields the classification of these objects for nonorientable surfaces. The paper also includes recipes to construct bm-symplectic structures on surfaces. The feasibility of such constructions depends on orientability and on the colorability of an associated graph. The desingularization technique in [10] is revisited for surfaces and the compatibility with this classification scheme is analyzed in detail.
作者简介
Eva Miranda
BGSMath Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC; IMCCE, CNRS-UMR8028, Observatoire de Paris
编辑信件的主要联系方式.
Email: eva.miranda@upc.edu
西班牙, Avinguda del Doctor Marañon 44–50, Barcelona, 08028; 77 Avenue Denfert-Rochereau, Paris, 75014
Arnau Planas
BGSMath Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC
Email: eva.miranda@upc.edu
西班牙, Avinguda del Doctor Marañon 44–50, Barcelona, 08028
补充文件
