Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
- 作者: Martínez-Torres D.1, Miranda E.2,3
-
隶属关系:
- Department of Mathematics
- Department of Mathematics-UPC and BGSMath
- CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot)
- 期: 卷 23, 编号 1 (2018)
- 页面: 47-53
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218907
- DOI: https://doi.org/10.1134/S1560354718010045
- ID: 218907
如何引用文章
详细
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
作者简介
David Martínez-Torres
Department of Mathematics
编辑信件的主要联系方式.
Email: dfmtorres@gmail.com
巴西, 225, Gávea - Rio de Janeiro, CEP, São Vicente, 22451-900
Eva Miranda
Department of Mathematics-UPC and BGSMath; CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot)
Email: dfmtorres@gmail.com
西班牙, Barcelona; 77 Avenue Denfert Rochereau, Paris, 75014
补充文件
