On integrability of certain rank 2 sub-Riemannian structures
- 作者: Kruglikov B.S.1, Vollmer A.2,3, Lukes-Gerakopoulos G.4,5
-
隶属关系:
- Institute of Mathematics and Statistics
- Mathematisches Institut
- INdAM - Politecnico di Torino, Dipartimento di Scienze Matematiche
- Institute of Theoretical Physics, Faculty of Mathematics and Physics
- Astronomical Institute of the Academy of Sciences of the Czech Republic
- 期: 卷 22, 编号 5 (2017)
- 页面: 502-519
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218699
- DOI: https://doi.org/10.1134/S1560354717050033
- ID: 218699
如何引用文章
详细
We discuss rank 2 sub-Riemannian structures on low-dimensional manifolds and prove that some of these structures in dimensions 6, 7 and 8 have a maximal amount of symmetry but no integrals polynomial in momenta of low degrees, except for those coming from the Killing vector fields and the Hamiltonian, thus indicating nonintegrability of the corresponding geodesic flows.
作者简介
Boris Kruglikov
Institute of Mathematics and Statistics
编辑信件的主要联系方式.
Email: boris.kruglikov@uit.no
挪威, Tromsø, 90-37
Andreas Vollmer
Mathematisches Institut; INdAM - Politecnico di Torino, Dipartimento di Scienze Matematiche
Email: boris.kruglikov@uit.no
德国, Jena, 07737; Corso Duca degli Abruzzi 24, Torino, 10129
Georgios Lukes-Gerakopoulos
Institute of Theoretical Physics, Faculty of Mathematics and Physics; Astronomical Institute of the Academy of Sciences of the Czech Republic
Email: boris.kruglikov@uit.no
捷克共和国, Prague, 121 16; Boční II 1401/1a, Prague, CZ-141 31
补充文件
