Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model
- Авторы: Kudryashov N.A.1
- 
							Учреждения: 
							- Department of Applied Mathematics
 
- Выпуск: Том 23, № 2 (2018)
- Страницы: 152-160
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218942
- DOI: https://doi.org/10.1134/S1560354718020028
- ID: 218942
Цитировать
Аннотация
The standard FitzHugh–Nagumo model for description of impulse from one neuron to another is considered. The system of equations is transformed to a nonlinear second-order ordinary differential equation. It is shown that the differential equation does not pass the Painlevé test in the general case and the general solution of this equation does not exist. The simplest solutions of the system of equations are found. The second-order differential equation is transformed to another asymptotic equation with the general solution expressed via the Jacobi elliptic function. This transformation allows us to obtain the asymptotic solutions of the FitzHugh–Nagumo model. The perturbed FitzHugh–Nagumo model is studied as well. Taking into account the simplest equation method, the exact solutions of the perturbed system of equations are found. The asymptotic solutions of the perturbed model are presented too. The application of the exact solutions for construction of the neural networks is discussed.
Ключевые слова
Об авторах
Nikolay Kudryashov
Department of Applied Mathematics
							Автор, ответственный за переписку.
							Email: nakudr@gmail.com
				                					                																			                												                	Россия, 							Kashirskoe sh. 31, Moscow, 115409						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					