A Nonholonomic Model of the Paul Trap


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, equations of motion for the problem of a ball rolling without slipping on a rotating hyperbolic paraboloid are obtained. Integrals of motions and an invariant measure are found. A detailed linear stability analysis of the ball’s rotations at the saddle point of the hyperbolic paraboloid is made. A three-dimensional Poincaré map generated by the phase flow of the problem is numerically investigated and the existence of a region of bounded trajectories in a neighborhood of the saddle point of the paraboloid is demonstrated. It is shown that a similar problem of a ball rolling on a rotating paraboloid, considered within the framework of the rubber model, can be reduced to a Hamiltonian system which includes the Brower problem as a particular case.

Sobre autores

Alexey Borisov

A.A. Blagonravov Mechanical Engineering Research Institute of RAS; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: borisov@rcd.ru
Rússia, ul. Bardina 4, Moscow, 117334; Institutskii per. 9, Dolgoprudnyi, 141700

Alexander Kilin

Udmurt State University

Email: borisov@rcd.ru
Rússia, ul. Universitetskaya 1, Izhevsk, 426034

Ivan Mamaev

Izhevsk State Technical University

Email: borisov@rcd.ru
Rússia, ul. Studencheskaya 7, Izhevsk, 426069

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018