Local Rigidity of Diophantine Translations in Higher-dimensional Tori
- Autores: Karaliolios N.1
-
Afiliações:
- South Kensington Campus
- Edição: Volume 23, Nº 1 (2018)
- Páginas: 12-25
- Seção: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218902
- DOI: https://doi.org/10.1134/S1560354718010021
- ID: 218902
Citar
Resumo
We prove a theorem asserting that, given a Diophantine rotation α in a torus Td ≡ Rd/Zd, any perturbation, small enough in the C∞ topology, that does not destroy all orbits with rotation vector α is actually smoothly conjugate to the rigid rotation. The proof relies on a KAM scheme (named after Kolmogorov–Arnol’d–Moser), where at each step the existence of an invariant measure with rotation vector α assures that we can linearize the equations around the same rotation α. The proof of the convergence of the scheme is carried out in the C∞ category.
Palavras-chave
Sobre autores
Nikolaos Karaliolios
South Kensington Campus
Autor responsável pela correspondência
Email: n.karaliolios@imperial.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, London, SW7 2AZ
Arquivos suplementares
