Conic Lagrangian Varieties and Localized Asymptotic Solutions of Linearized Equations of Relativistic Gas Dynamics


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study asymptotic solution of the Cauchy problem for the linearized system of relativistic gas dynamics. We assume that initial condiditiopns are strongly localized near a space-like surface in the Minkowsky space. We prove that the solution can be decomposed into three modes, corresponding to different routsb of the equations of characteristics. One of these roots is twice degenerate and the there are no focal points in the corresponding miode. The other two roots are simple; in order to describe the corresponding modes, we use the modificication of the Maslov’s canonical operator which was obtained recently.

Авторлар туралы

Anna Allilueva

Institute for Problems in Mechanics; Moscow Institute of Physics and Technology; National Research Centre “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: esina_anna@list.ru
Ресей, pr. Vernadskogo 101-1, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141700; pl. Akademika Kurchatova 1, Moscow, 123182

Andrei Shafarevich

Institute for Problems in Mechanics; Moscow Institute of Physics and Technology; National Research Centre “Kurchatov Institute”; M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: shafarev@yahoo.com
Ресей, pr. Vernadskogo 101-1, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141700; pl. Akademika Kurchatova 1, Moscow, 123182; Leninskie Gory 1, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019