Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability
- Авторлар: Kozlov V.V.1
- 
							Мекемелер: 
							- Steklov Mathematical Institute
 
- Шығарылым: Том 23, № 1 (2018)
- Беттер: 26-46
- Бөлім: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218904
- DOI: https://doi.org/10.1134/S1560354718010033
- ID: 218904
Дәйексөз келтіру
Аннотация
A chain of quadratic first integrals of general linear Hamiltonian systems that have not been represented in canonical form is found. Their involutiveness is established and the problem of their functional independence is studied. The key role in the study of a Hamiltonian system is played by an integral cone which is obtained by setting known quadratic first integrals equal to zero. A singular invariant isotropic subspace is shown to pass through each point of the integral cone, and its dimension is found. The maximal dimension of such subspaces estimates from above the degree of instability of the Hamiltonian system. The stability of typical Hamiltonian systems is shown to be equivalent to the degeneracy of the cone to an equilibrium point. General results are applied to the investigation of linear mechanical systems with gyroscopic forces and finite-dimensional quantum systems.
Авторлар туралы
Valery Kozlov
Steklov Mathematical Institute
							Хат алмасуға жауапты Автор.
							Email: kozlov@pran.ru
				                					                																			                												                	Ресей, 							ul. Gubkina 8, Moscow, 119991						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					