Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article considers the possibility of using neural networks for the short-term forecasting of electricity prices in the day-ahead market (DAM) based on factors strictly determined for the forecast period. A set of six factors has been determined, which allows an hourly forecast of the DAM price to be constructed for a month in each of the four seasons with a high accuracy. The proposed model shows low average errors in forecasting the price for each hour of the month and in turn allows possible significant price deviations to be anticipated.

Авторлар туралы

I. Zolotova

Institute for Problems of Pricing and Regulation of Natural Monopolies of the National Research University

Хат алмасуға жауапты Автор.
Email: izolotova@hse.ru
Ресей, Moscow

V. Dvorkin

Institute for Problems of Pricing and Regulation of Natural Monopolies of the National Research University

Email: izolotova@hse.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017