A Generalization of the Wang–Ahmad Inequality


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

By introducing a truncation parameter, we generalize the Ahmad–Wang inequality (2016) which provides an estimate of the accuracy of the normal approximation to distribution of a sum of independent random variables in terms of weighted absolute values of truncated third-order moments and tails of the second-order moments of random summands. The obtained estimate also generalizes the celebrated inequalities due to Berry (1941), Esseen (1942, 1969), Katz (1963), and Petrov (1965).

作者简介

R. Gabdullin

Faculty of Computational Mathematics and Cybernetics, Moscow State University

Email: ishevtsova@cs.msu.ru
俄罗斯联邦, Moscow

V.A. Makarenko

Faculty of Computational Mathematics and Cybernetics, Moscow State University

Email: ishevtsova@cs.msu.ru
俄罗斯联邦, Moscow

I. Shevtsova

School of Science, Hangzhou Dianzi University; Faculty of Computational Mathematics and Cybernetics, Moscow State University; Institute of Informatics Problems of Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ishevtsova@cs.msu.ru
中国, Hangzhou; Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019