The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module
- 作者: Vostokov S.V.1, Nekrasov I.I.1
-
隶属关系:
- St.Petersburg State University
- 期: 卷 219, 编号 3 (2016)
- 页面: 375-379
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/238578
- DOI: https://doi.org/10.1007/s10958-016-3113-6
- ID: 238578
如何引用文章
详细
In the paper, the structure of the \( \mathcal{O} \)K[G]-module F(\( \mathfrak{m} \)M) is described, where M/L, L/K, and K/ℚp are finite Galois extensions (p is a fixed prime number), G = Gal(M/L), \( \mathfrak{m} \)M is a maximal ideal of the ring of integers \( \mathcal{O} \)M, and F is a Lubin–Tate formal group law over the ring \( \mathcal{O} \)K for a fixed uniformizer π.
作者简介
S. Vostokov
St.Petersburg State University
编辑信件的主要联系方式.
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg
I. Nekrasov
St.Petersburg State University
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg
补充文件
