The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the paper, the structure of the \( \mathcal{O} \)K[G]-module F(\( \mathfrak{m} \)M) is described, where M/L, L/K, and K/ℚp are finite Galois extensions (p is a fixed prime number), G = Gal(M/L), \( \mathfrak{m} \)M is a maximal ideal of the ring of integers \( \mathcal{O} \)M, and F is a Lubin–Tate formal group law over the ring \( \mathcal{O} \)K for a fixed uniformizer π.

作者简介

S. Vostokov

St.Petersburg State University

编辑信件的主要联系方式.
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg

I. Nekrasov

St.Petersburg State University

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016