Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 233, № 3 (2018)

Article

Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 2

Shamolin M.

Аннотация

In this review, we discuss new cases of integrable systems on the tangent bundles of finite-dimensional spheres. Such systems appear in the dynamics of multidimensional rigid bodies in non-conservative fields. These problems are described by systems with variable dissipation with zero mean. We found several new cases of integrability of equations of motion in terms of transcendental functions (in the sense of the classification of singularities) that can be expressed as finite combinations of elementary functions.

Journal of Mathematical Sciences. 2018;233(3):301-397
pages 301-397 views

Phase Portraits of Dynamical Equations of Motion of a Rigid Body in a Resistive Medium

Shamolin M.

Аннотация

We consider a mathematical model of the influence of a medium on a rigid body with a specific shape of its surface. In this model, we take into account the additional dependence of the moment of the interaction force on the angular velocity of the body. We present a complete system of equations of motion under the quasi-stationarity conditions. The dynamical part of equations of motion forms an independent third-order system, which contains, in its turn, an independent secondorder subsystem. We ovtain a new family of phase portraits on the phase cylinder of quasi-velocities, which differs from families obtained earlier.

Journal of Mathematical Sciences. 2018;233(3):398-425
pages 398-425 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).