A Note on Approximation by Trigonometric Polynomials


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let \( E=\underset{k=1}{\overset{n}{\cup }}\left[{a}_k,{b}_k\right]\subset \mathbb{R} \); if n > 1, then we assume that the segments [ak, bk] are pairwise disjoint. Assume that the following property holds: E ∩ (E + 2πν) = ∅, ν ∈ , ν ≠ 0. Denote by Hω + r(E) the space of functions f defined on E such that |f(r)(x2) − f(r)(x1)| ≤ cfω(|x2 − x1|), x1, x2 ∈ E, f(0) ≡ f. Assume that a modulus of continuity ω satisfies the condition

\( \underset{0}{\overset{x}{\int }}\frac{\omega (t)}{t} dt+x\underset{x}{\overset{\infty }{\int }}\frac{\omega (t)}{t^2} dt\le c\omega (x). \)

We find a constructive description of the space Hω + r(E) in terms of the rate of nonuniform approximation of a function f ∈ Hω + r(E) by trigonometric polynomials if E and ω satisfy the above conditions.

Об авторах

N. Shirokov

St. Petersburg State University and High School of Economics

Автор, ответственный за переписку.
Email: nikolai.shirokov@gmail.com
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).