Stieltjes Integrals in the Theory of Harmonic Functions
- Авторы: Ryazanov V.I.1
-
Учреждения:
- Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine
- Выпуск: Том 243, № 6 (2019)
- Страницы: 922-933
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243187
- DOI: https://doi.org/10.1007/s10958-019-04593-3
- ID: 243187
Цитировать
Аннотация
We study various Stieltjes integrals (Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz– Stieltjes, and Cauchy–Stieltjes integrals) and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results are valid for arbitrary bounded integrands that are differentiable a.e. and, in particular, for integrands from the class CBV (countably bounded variation).
Об авторах
V. Ryazanov
Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine
Автор, ответственный за переписку.
Email: vlryazanov1@rambler.ru
Украина, Slavyansk
Дополнительные файлы
