Plotkin’s Geometric Equivalence, Mal’cev’s Closure, and Incompressible Nilpotent Groups
- Авторы: Noskov G.A.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Выпуск: Том 243, № 4 (2019)
- Страницы: 601-611
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243124
- DOI: https://doi.org/10.1007/s10958-019-04561-x
- ID: 243124
Цитировать
Аннотация
In 1997, B. I. Plotkin introduced a concept of geometric equivalence of algebraic structures and posed a question: is it true that every nilpotent torsion-free group is geometrically equivalent to its Mal’cev’s closure? A negative answer in the form of three counterexamples was given by V. V. Bludov and B. V. Gusev in 2007. In the present paper, an infinite series of counterexamples of unbounded Hirsch rank and nilpotency degree is constructed.
Об авторах
G. Noskov
Sobolev Institute of Mathematics
Автор, ответственный за переписку.
Email: g.noskov@googlemail.com
Россия, Omsk
Дополнительные файлы
