Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors have complete 4-dimensional real hyperbolic structures. Such bounded locally homeomorphic quasiregular mappings are defined in the unit 3-ball B3 ⊂ ℝ3 as mappings equivariant with the standard conformal action of uniform hyperbolic lattices Γ ⊂ Isom H3 in the unit 3-ball and with its discrete representation G = ρ(Γ) ⊂ Isom H4. Here, G is the fundamental group of our non-trivial hyperbolic 4-cobordism M = (H4 ∪ Ω(G))/G, and the kernel of the homomorphism ρ: Γ → G is a free group F3 on three generators.

Об авторах

Boris Apanasov

Department of Mathematics, University of Oklahoma

Автор, ответственный за переписку.
Email: apanasov@ou.edu
США, Norman

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).