On the Application of the Matrix Formalism for the Heat Kernel to Number Theory


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Earlier, in the study of combinatorial properties of the heat kernel of the Laplace operator with covariant derivative, a diagram technique and matrix formalism were constructed. In particular, the obtained formalism allows one to control the coefficients of the heat kernel, which is useful for calculations. In this paper, we consider a simple case with an Abelian connection in the two-dimensional space. This model allows us to give a mathematical description of the operators and find a relation between these operators and generating functions of numbers.

Об авторах

A. Ivanov

St. Petersburg Department of Steklov Institute of Mathematics

Автор, ответственный за переписку.
Email: regul1@mail.ru
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).