Monogenic Functions in Commutative Algebras Associated with Classical Equations of Mathematical Physics


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The methods involving the functions analytic in a complex plane for plane potential fields inspire the search for the analogous efficient methods for solving the spatial and multidimensional problems of mathematical physics. Many such methods are based on the mappings of hypercomplex algebras. The essence of the algebraic-analytic approach to elliptic equations of mathematical physics consists in the finding of a commutative Banach algebra such that the differentiable functions with values in this algebra have components satisfying the given equation with partial derivatives. The use of differentiable functions given in commutative Banach algebras combines the preservation of basic properties of analytic functions of a complex variable for the mentioned differentiable functions and the convenience and the simplicity of construction of solutions of PDEs. The paper contains the review of results reflecting the formation and the development of the mentioned approach.

Об авторах

Sergiy Plaksa

Department of Complex Analysis and Potential Theory, Institute of Mathematics of the National Academy of Science of Ukraine

Автор, ответственный за переписку.
Email: plaksa62@gmail.com
Украина, Kyiv

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).