Shifted Darboux Transformations of the Generalized Jacobi Matrices, I
- Авторы: Kovalyov I.M.1
-
Учреждения:
- Dragomanov National Pedagogical University
- Выпуск: Том 242, № 3 (2019)
- Страницы: 393-412
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242985
- DOI: https://doi.org/10.1007/s10958-019-04485-6
- ID: 242985
Цитировать
Аннотация
Let ℑ be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix ℑ to admit a factorization ℑ = ???????? + αI with ???? and ???? being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of ℑ defined by ℑ(p) = ???????? + αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation ℑ(p) are found.
Об авторах
Ivan Kovalyov
Dragomanov National Pedagogical University
Автор, ответственный за переписку.
Email: i.m.kovalyov@gmail.com
Украина, Kiev
Дополнительные файлы
