Waves in a Plane Rectangular Lattice of Thin Elastic Waveguides


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the spectrum of a thin (with the relative width h ≪ 1) rectangular lattice of elastic isotropic (with the Lamé constants ⋋ ≥ 0 and μ > 0) plane waveguides simulating joining seams of a doubly periodic system of identical absolutely rigid tiles. We establish that the low-frequency range of the essential spectrum contains two spectral bands (passing ones for waves) of length O(e−δ/(2h)), δ > 0. Above these bands there is a gap of width O(h−2) (stopping zones for waves) and then, in the mid-frequency range, above the cut-off value μπ2h−2 of the continuous spectrum of the infinite cross-shaped waveguide, there is a family of spectral bands of length O(h); moreover, between some of these bands there are opened up gaps of width O(1). The character of the wave propagation depends on whether the frequencies are below or above the cut-off value. In the first case, the oscillations are strictly concentrated near the lattice nodes and the edges are practically immovable. In the second case, the oscillations are localized on the lattice edges, i.e., the nodes are left at relative rest. We show that single perturbations of nodes or edges can cause the appearance of points of the discrete spectrum under the essential spectrum or inside the gaps; moreover, an infinite collection of identical perturbations of nodes can also change the essential spectrum. Bibliography: 78 titles. Illustrations: 5 figures.

Об авторах

S. Nazarov

St.-Petersburg State University

Автор, ответственный за переписку.
Email: srgnazarov@yahoo.co.uk
Россия, 7-9, Universitetskaya nab., St. Petersburg, 199034

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).