Differentiability Properties of the Symbol of a Generalized Riesz Potential with Homogeneous Characteristic


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let f be a positive homogeneous function of degree 0 defined on the sphere Σ of the space ℝn, and let Φα be the symbol of the integral operator

\( \underset{{\mathrm{\mathbb{R}}}^n}{\int}\frac{f\left(\left(\mathrm{x}-y\right)/\left|\mathrm{x}-y\right|\right)}{{\left|\mathrm{x}-y\right|}^{n-\alpha }}u(y) dy,\kern1em u\in {C}_0^{\infty}\left({\mathrm{\mathbb{R}}}^n\right), \)

with 0 < α < n. We study differentiability properties of the restriction of Φα to the unit sphere Σ in the spaces \( {H}_p^l\left(\Sigma \right) \) for p ∈ (1,∞), where \( {H}_p^l\left(\Sigma \right) \) denotes the space of Bessel potentials with the norm \( {\left\Vert f\right\Vert}_{H_p^l\left(\Sigma \right)}={\left\Vert {\left(\delta +I\right)}^{l/2}f\right\Vert}_{L_p\left(\Sigma \right)} \) and δ is the Beltrami operator on the sphere. We prove that if f ∈ Lp(Σ), then \( {\left.{\Phi}_{\alpha}\right|}_{\Sigma}\in {H}_p^l\left(\Sigma \right) \) for any l ≤ n/2 − α − |p−1 − 2−1|(n − 2). Conversely, if \( {\left.{\Phi}_{\alpha}\right|}_{\Sigma}\in {H}_p^l\left(\Sigma \right) \) with |l ≥ n/2 − α+|p−1 − 2−1|(n − 2), then f ∈ Lp(Σ). The results are sharp.

Об авторах

F. Lanzara

Sapienza University of Rome

Email: vladimir.mazya@liu.se
Италия, 2, Piazzale Aldo Moro, Rome, 00185

V. Maz’ya

University of Linköping; Sweden RUDN University

Автор, ответственный за переписку.
Email: vladimir.mazya@liu.se
Швеция, Linköping, 581 83; 6 Miklukho-Maklay St, Moscow, 117198

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).