Random Walks and Measures on Hilbert Space that are Invariant with Respect to Shifts and Rotations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study random walks in a Hilbert space H and their applications to representations of solutions to Cauchy problems for differential equations whose initial conditions are number-valued functions on the Hilbert space H. Examples of such representations of solutions to various evolution equations in the case of a finite-dimensional space H are given. Measures on a Hilbert space that are invariant with respect to shifts are considered for constructing such representations in infinite-dimensional Hilbert spaces. According to a theorem of A. Weil, there is no Lebesgue measure on an infinite-dimensional Hilbert space. We study a finitely additive analog of the Lebesgue measure, namely, a nonnegative, finitely additive measure λ defined on the minimal ring of subsets of an infinite-dimensional Hilbert space H containing all infinite-dimensional rectangles whose products of sides converge absolutely; this measure is invariant with respect to shifts and rotations in the Hilbert space H. We also consider finitely additive analogs of the Lebesgue measure on the spaces lp, 1 ≤ p ≤ ∞, and introduce the Hilbert space \( \mathcal{H} \) of complex-valued functions on the Hilbert space H that are square integrable with respect to a shift-invariant measure λ. We also obtain representations of solutions to the Cauchy problem for the diffusion equation in the space H and the Schrödinger equation with the coordinate space H by means of iterations of the mathematical expectations of random shift operators in the Hilbert space \( \mathcal{H} \).

Об авторах

V. Sakbaev

Moscow Institute of Physics and Technology

Автор, ответственный за переписку.
Email: fumi2003@mail.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).