Contact Problem for a Rigid Punch and an Elastic Half Space as an Inverse Problem


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We solve a contact problem of indentation of a punch into an elastic half space with regard for the friction and in the presence of the zones of adhesion, sliding, and separation. The applied approach is based on the statement of the problem in the form of the inverse problem in which the Coulomb law of friction is used as an additional condition in the regions with friction. In the formulation of the inverse problem, we take into account the presence of the zones of adhesion whose sizes are unknown. The correctness of the solution of the inverse problem is analyzed. The proposed approach, in combination with the procedure of discretization, enables us to determine the zones of microsliding alternating with the zones of adhesion and separation.

Об авторах

N. Obodan

Honchar Dnipro National University

Email: Jade.Santos@springer.com
Украина, Dnipro

T. Zaitseva

Honchar Dnipro National University

Email: Jade.Santos@springer.com
Украина, Dnipro

O. Fridman

Honchar Dnipro National University

Email: Jade.Santos@springer.com
Украина, Dnipro

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).