Partial logarithmic derivatives and distribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We obtain the sufficient conditions of boundedness of L-index in joint variables for analytic functions in the unit ball, where \( L:{\mathbb{C}}^n\to {\mathbb{R}}_{+}^n \) is a continuous positive vector-function. They give an stimate of the maximum modulus of an analytic function by its minimum modulus on a skeleton in a polydisc and describe the behavior of all partial logarithmic derivatives outside some exceptional set and the distribution of zeros. The deduced results are also new for analytic functions in the unit disc of bounded index and l-index. They generalize known results by G. H. Fricke, M. M. Sheremeta, A. D. Kuzyk, and V. O. Kushnir.

Об авторах

Andriy Bandura

Ivano-Frankivsk National Technical University of Oil and Gas

Автор, ответственный за переписку.
Email: andriykopanytsia@gmail.com
Украина, Ivano-Frankivsk

Oleh Skaskiv

Ivan Franko National University of Lviv

Email: andriykopanytsia@gmail.com
Украина, Lviv

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).